K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2023

a) ĐKXĐ: \(x\ne0;x\ne6;x\ne-6\)

b) \(A=\left(\dfrac{x}{x^2-36}-\dfrac{x-6}{x^2+6x}\right):\dfrac{2x-6}{x^2+6x}+\dfrac{x}{6-x}\)

\(A=\left[\dfrac{x}{\left(x+6\right)\left(x-6\right)}-\dfrac{x-6}{x\left(x+6\right)}\right]:\dfrac{2\left(x-3\right)}{x\left(x+6\right)}+\dfrac{x}{6-x}\)

\(A=\left[\dfrac{x^2}{x\left(x+6\right)\left(x-6\right)}-\dfrac{\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}\right]:\dfrac{2\left(x-3\right)}{x\left(x+6\right)}+\dfrac{x}{6-x}\)

\(A=\dfrac{x^2-x^2+12x-36}{x\left(x+6\right)\left(x-6\right)}:\dfrac{2\left(x-3\right)}{x\left(x+6\right)}+\dfrac{x}{6-x}\)

\(A=\dfrac{12x-36}{x\left(x+6\right)\left(x-6\right)}:\dfrac{2\left(x-3\right)}{x\left(x+6\right)}+\dfrac{x}{6-x}\)

\(A=\dfrac{12\left(x-3\right)}{x\left(x+6\right)\left(x-6\right)}:\dfrac{2\left(x-3\right)}{x\left(x+6\right)}-\dfrac{x}{x-6}\)

\(A=\dfrac{12\left(x-3\right)}{x\left(x+6\right)\left(x-6\right)}\cdot\dfrac{x\left(x+6\right)}{2\left(x-3\right)}-\dfrac{x}{x-6}\)

\(A=\dfrac{6}{x-6}-\dfrac{x}{x-6}\)

\(A=\dfrac{6-x}{x-6}\)

\(A=-\dfrac{x-6}{x-6}\)

\(A=-1\)

Vậy giá trị của A không phụ thuộc vào giá trị của biến 

16 tháng 3 2017

Biểu thức xác định khi x 2 - 36 ≠ 0 ,  x 2 + 6 x ≠ 0 , 6 – x ≠ 0 và 2x – 6  ≠  0

x 2 - 36 ≠ 0  ⇒ (x – 6)(x + 6)  ≠  0 ⇒ x  ≠  6 và x  ≠  -6

x 2 + 6 x ≠ 0  ⇒ x(x + 6)  ≠  0 ⇒ x  ≠  0 và x  ≠  -6

6 – x  ≠  0 ⇒ x  ≠  6

2x – 6  ≠  0 ⇒ x  ≠  3

Vậy x  ≠  0, x  ≠  3, x  ≠  6 và x  ≠  -6 thì biểu thức xác định.

Ta có:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy biểu thức không phụ thuộc vào biến x.

26 tháng 12 2019

a) Phân thức xác định khi: \(\Leftrightarrow x-3\ne3\Leftrightarrow x\ne3\)

ĐKXĐ: \(x\ne3\)

b) \(A=\frac{2x^2+6x}{x^2-9}=\frac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{2x}{x-3}\)

c) Thay x = -4 vào phân thức đã thu gọn, ta có:

 \(A=\frac{2.\left(-4\right)}{\left(-4\right)-3}=\frac{8}{7}\)

Vậy: tại x = -4 là \(\frac{8}{7}\)

28 tháng 12 2019

a) \(x^2-9=\left(x-3\right)\left(x+3\right)\)

Phân thức xác định khi: \(\left(x-3\right)\left(x+3\right)\ne0\)

\(\Leftrightarrow\hept{\begin{cases}x-3=0\\x+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\x=-3\end{cases}}\Leftrightarrow x\ne\pm3\)

ĐKXĐ: \(x\ne\pm3\)

b) \(A=\frac{2x^2+6x}{x^2-9}=\frac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{2x}{x-3}\)

c) \(A=\frac{2.\left(-4\right)}{\left(-4\right)-3}=\frac{8}{7}\)

16 tháng 6 2016

\(A=6x^2+3x+2x+1-\left(6x^2-x+6x-1\right)\)

=\(6x^2+5x+1-6x^2-5x+1\)

\(=2\)

Suy ra biểu thức có giá trị không phụ thuộc vào biến.

\(B=2x^3+x^2+x-2x^2-x-1-\left(2x^3+3x^2+6x-4x^2-6x-12\right)\)

\(=2x^3-x^2-1-2x^3+x^2+12\)

\(=11\)

Suy ra biểu thức có giá trị không phụ thuộc vào biến.

16 tháng 6 2016

a,

A=(2x+1)(3x+1)-(6x-1)(x+1)

=6x2+2x+3x+1-(6x2+6x-x-1

=6x2+2x+3x+1-6x2-6x+x+1

=6x2-6x2+2x+3x-6x+x+1+1

=2

Đpcm

b,

B=(x-1)(2x2+x+x)-(x-2)(2x2+3x+6)

=2x3+x2+x-2x2-x-1-(2x3+3x2+6x-4x2-6x-12)

=2x3+x2+x-2x2-x-1-2x3-3x2-6x+4x2+6x+12

=2x3-2x3+x2-2x2-3x2+4x2+x-x-6x+6x-1+12

=11

Đpcm

18 tháng 12 2017

A = (2x - 3)(3x + 5) - (x - 1)(6x + 2) + 3 - 5x

= 6x2 + 10x - 9x - 15 - 6x2 - 2x + 6x + 2 + 3 - 5x

= (6x2 - 6x2) + (10x - 9x - 2x + 6x - 5x) - (15 - 2 - 3)

= -10

Vậy A ko phụ thuộc vào giá trị của biến x

18 tháng 12 2017

a, A = 6x^2+x-15-6x^2+4x+2+3-5x = -10 

=> Gía trị của biểu thức A ko phụ thuộc vào giá trị của biến

k mk nha