K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2017

.a.A=\(\dfrac{x^2-3+x+3}{\left(x-3\right)\left(x+3\right)}\).\(\dfrac{x+3}{x}\)=\(\dfrac{x^2+x}{\left(x-3\right)}\).\(\dfrac{1}{x}\)=\(\dfrac{x\left(x+1\right)}{\left(x-3\right)}\).\(\dfrac{1}{x}\)

A=\(\dfrac{x-1}{x+3}\)

b.|A|=3<=>\(\left\{{}\begin{matrix}A=3\\A=-3\end{matrix}\right.\)

Xét A=3<=>\(\dfrac{x-1}{x+3}\)=3<=>x-1=3(x+3)<=>x=-4

Xét A=-3<=>\(\dfrac{x-1}{x+3}\)=-3<=>x-1=-3(x+3)<=>x=-\(\dfrac{5}{2}\)

Mk nghĩ v ko biết có đúng ko

3 tháng 5 2017

Mk sai rồi

14 tháng 12 2018

a,ĐK:  \(\hept{\begin{cases}x\ne0\\x\ne\pm3\end{cases}}\)

b, \(A=\left(\frac{9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right):\left(\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right)\)

\(=\frac{9+x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}:\frac{3\left(x-3\right)-x^2}{3x\left(x+3\right)}\)

\(=\frac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}.\frac{3x\left(x+3\right)}{-x^2+3x-9}=\frac{-3}{x-3}\)

c, Với x = 4 thỏa mãn ĐKXĐ thì

\(A=\frac{-3}{4-3}=-3\)

d, \(A\in Z\Rightarrow-3⋮\left(x-3\right)\)

\(\Rightarrow x-3\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\Rightarrow x\in\left\{0;2;4;6\right\}\)

Mà \(x\ne0\Rightarrow x\in\left\{2;4;6\right\}\)

a) Ta có: \(P=\left(\dfrac{3}{x+1}+\dfrac{x-9}{x^2-1}+\dfrac{2}{1-x}\right):\dfrac{x-3}{x^2-1}\)

\(=\left(\dfrac{3\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\dfrac{x-9}{\left(x+1\right)\left(x-1\right)}-\dfrac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\right):\dfrac{x-3}{x^2-1}\)

\(=\dfrac{3x-3+x-9-2x-2}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{x-3}\)

\(=\dfrac{2x-14}{x-3}\)

b) Ta có: \(x^2-9=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(loại\right)\\x=-3\left(nhận\right)\end{matrix}\right.\)

Thay x=-3 vào biểu thức \(P=\dfrac{2x-14}{x-3}\), ta được:

\(P=\dfrac{2\cdot\left(-3\right)-14}{-3-3}=\dfrac{-20}{-6}=\dfrac{10}{3}\)

Vậy: Khi \(x^2-9=0\) thì \(P=\dfrac{10}{3}\)

c) Để P nguyên thì \(2x-14⋮x-3\)

\(\Leftrightarrow2x-6-8⋮x-3\)

mà \(2x-6⋮x-3\)

nên \(-8⋮x-3\)

\(\Leftrightarrow x-3\inƯ\left(-8\right)\)

\(\Leftrightarrow x-3\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)

\(\Leftrightarrow x\in\left\{4;2;5;1;7;-1;11;-5\right\}\)

Kết hợp ĐKXĐ, ta được: \(x\in\left\{4;2;5;7;11;-5\right\}\)

Vậy: Để P nguyên thì \(x\in\left\{4;2;5;7;11;-5\right\}\)

Đề sai rồi bạn

3 tháng 1 2019

Đcm học ngu k biết xài caskov

7 tháng 3 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ne\pm2\\x\ne-3\end{cases}}\)

b) \(P=1+\frac{x+3}{x^2+5x+6}\div\left(\frac{8x^2}{4x^3-8x^2}-\frac{3x}{3x^2-12}-\frac{1}{x+2}\right)\)

\(\Leftrightarrow P=1+\frac{x+3}{\left(x+3\right)\left(x+2\right)}:\left(\frac{8x^2}{4x^2\left(x-2\right)}-\frac{3x}{3\left(x^2-4\right)}-\frac{1}{x+2}\right)\)

\(\Leftrightarrow P=1+\frac{1}{x+2}:\left(\frac{2}{x-2}-\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{1}{x+2}\right)\)

\(\Leftrightarrow P=1+\frac{1}{x+2}:\frac{2x+4-x-x+2}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow P=1+\frac{1}{x+2}:\frac{6}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow P=1+\frac{\left(x-2\right)\left(x+2\right)}{6\left(x+2\right)}\)

\(\Leftrightarrow P=1+\frac{x-2}{6}\)

\(\Leftrightarrow P=\frac{x+4}{6}\)

c) Để P = 0

\(\Leftrightarrow\frac{x+4}{6}=0\)

\(\Leftrightarrow x+4=0\)

\(\Leftrightarrow x=-4\)

Để P = 1

\(\Leftrightarrow\frac{x+4}{6}=1\)

\(\Leftrightarrow x+4=6\)

\(\Leftrightarrow x=2\)

d) Để P > 0

\(\Leftrightarrow\frac{x+4}{6}>0\)

\(\Leftrightarrow x+4>0\)(Vì 6>0)

\(\Leftrightarrow x>-4\)

a: \(A=\dfrac{-\left(x+2\right)^2-2x\left(x-2\right)-4x^2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-\left(x-2\right)\left(x-3\right)}{\left(x-3\right)^2}\)

\(=\dfrac{-x^2-4x-4-2x^2+4x-4x^2}{\left(x+2\right)}\cdot\dfrac{-1}{x-3}\)

\(=\dfrac{-7x^2-4}{\left(x+2\right)}\cdot\dfrac{-1}{x-3}=\dfrac{7x^2+4}{\left(x+2\right)\left(x-3\right)}\)

b: Khi x=1/3 thì \(A=\dfrac{7\cdot\dfrac{1}{9}+4}{\left(\dfrac{1}{3}-2\right)\left(\dfrac{1}{3}-3\right)}=\dfrac{43}{40}\)

a: Ta có: |x+4|=1

=>x+4=1 hoặc x+4=-1

=>x=-3(loại) hoặc x=-5

Khi x=-5 thì \(A=\dfrac{\left(-5\right)^2-5}{3\left(-5+3\right)}=\dfrac{20}{3\cdot\left(-2\right)}=\dfrac{-10}{3}\)

b: \(B=\dfrac{x-1+x+1-3+x}{\left(x-1\right)\left(x+1\right)}=\dfrac{3x-3}{\left(x-1\right)\left(x+1\right)}=\dfrac{3}{x+1}\)

a) Ta có: \(A=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{3-11x}{9-x^2}\)

\(=\dfrac{2x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\dfrac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{11x-3}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{2x^2-6x+x^2+4x+3+11x-3}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{3x^2+9x}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{3x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x}{x-3}\)

b)

ĐKXĐ: \(x\notin\left\{3;-3;-1\right\}\)

Ta có: P=AB

\(=\dfrac{3x}{x-3}\cdot\dfrac{x-3}{x+1}\)

\(=\dfrac{3x}{x+1}\)

Để \(P=\dfrac{9}{2}\) thì \(\dfrac{3x}{x+1}=\dfrac{9}{2}\)

\(\Leftrightarrow9\left(x+1\right)=6x\)

\(\Leftrightarrow9x-6x=-9\)

\(\Leftrightarrow3x=-9\)

hay x=-3(loại)

Vậy: Không có giá trị nào của x để \(P=\dfrac{9}{2}\)

3 tháng 6 2017

a) A \(=\left(\dfrac{3-x}{x+3}.\dfrac{x^2+6x+9}{x^2-9}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)

\(\)\(=\left(\dfrac{9-x^2}{x^2-9}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)

\(=\dfrac{-3}{x+3}:\dfrac{3x^2}{x+3}\)

\(=\dfrac{-1}{x^2}\)

b) \(x=\dfrac{-1}{2}\) (Thỏa mãn ĐKXĐ \(x\ne3;x\ne-3\) )

Thay \(x=\dfrac{-1}{2}\) vào biểu thức A, ta có:

\(A=\dfrac{-1}{\left(\dfrac{-1}{2}\right)^2}=-4\)

Vậy với \(x=\dfrac{-1}{2}\) giá trị của biểu thức A = -4.

c) \(\dfrac{-1}{x^2}< 0\)

\(\Rightarrow x^2>0\) (Luôn đúng)

Vậy với mọi giá trị của \(x\) để A < 0

26 tháng 7 2018

a/ (1+x2).(1+x)

b/A=\(\dfrac{-68}{27}\)

c/x>-1 và x2 >1

phần giải tự lm nhé

AH
Akai Haruma
Giáo viên
27 tháng 7 2018

Lời giải:

a) ĐKXĐ: \(x\neq \pm 1\)

Ta có: \(A=\left(\frac{1-x^3}{1-x}-x\right):\frac{1-x^2}{1-x-x^2+x^3}\)

\(=\left(\frac{(1-x)(1+x+x^2)}{1-x}-x\right): \frac{1-x^2}{(1-x)-x^2(1-x)}\)

\(=(1+x+x^2-x):\frac{1-x^2}{(1-x)(1-x^2)}=(1+x^2):\frac{1}{1-x}=(x^2+1)(1-x)\)

b) Tại \(x=-1\frac{2}{3}=\frac{-5}{3}\Rightarrow A=(\frac{25}{9}+1)(1-\frac{-5}{3})=\frac{272}{27}\)

c) Để \(A=(x^2+1)(1-x)>0\)

\(\Rightarrow 1-x>0\) (do \(x^2+1>0\) )

\(\Rightarrow x< 1\)

Vậy \(x<1; x\neq -1\)