K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2019

a. ĐKXĐ: x3 - x \(\ne\)0 <=> x(x2 - 1) \(\ne\)0 <=> x \(\ne\)0 và x\(\ne\)\(\pm\)1

b. \(A=\frac{x\left(x^2+2x+1\right)}{x\left(x-1\right)\left(x+1\right)}\)

\(=\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x+1}{x-1}với\)\(x\ne0\)và \(x\ne\pm1\)

\(c.A=2\Leftrightarrow\frac{x+1}{x-1}=2\)

\(\Leftrightarrow\left(x-1\right).2=x+1\)

\(2x-2=x+1\)

\(x=3\)

16 tháng 12 2019

a) Giá trị của phân thức A xác định

\(\Leftrightarrow x^3-x\ne0\)

\(\Leftrightarrow x\left(x^2-1\right)\ne0\)

\(\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne1\\x\ne-1\end{cases}}\)

Vậy với \(x\ne0;x\ne\pm1\)thì giá trị của phân thức A đưcọ xác định.

ĐKXĐ: \(x\ne0;x\ne\pm1\)

b) Ta có :

\(A=\frac{x^3+2x^2+x}{x^3-x}\)

\(A=\frac{x\left(x^2+2x+1\right)}{x\left(x+1\right)\left(x-1\right)}\)

\(A=\frac{\left(x+1\right)^2}{\left(x+1\right)\left(x-1\right)}\)

\(A=\frac{x+1}{x-1}\)

c) A = 2

\(\Leftrightarrow\frac{x+1}{x-1}=2\)

\(\Leftrightarrow x+1=2\left(x-1\right)\)

\(\Leftrightarrow x+1=2x-2\)

\(\Leftrightarrow x-2x=-1-2\)

\(\Leftrightarrow-x=-3\)

\(\Leftrightarrow x=3\)( Thỏa mãn ĐKXĐ )

Vậy ..............

11 tháng 12 2017

bài 1 :

tự làm

10 tháng 12 2017

a, ĐKXĐ: \(X\ne0;X\ne\pm1\)

b,\(A=\frac{X\left(X^2+2X+1\right)}{X\left(X^2-1\right)}=\frac{X\left(X+1\right)^2}{X\left(X-1\right)\left(X+1\right)}=\frac{X+1}{X-1}\)

c,Ta có: \(A=\frac{X+1}{X-1}=2\Leftrightarrow2\left(X-1\right)=X+1\Leftrightarrow2X-2=X+1\Leftrightarrow X=3\)

10 tháng 12 2017

a) \(ĐKXĐ:x\ne0;x\ne1\)

b) \(A=\frac{x^3+2x^2+x}{x^3-x}\)

\(A=\frac{x\left(x^2+2x+1\right)}{x\left(x^2-1\right)}\)

\(A=\frac{x\left(x+1\right)^2}{x\left(x-1\right)\left(x+1\right)}\)

\(A=\frac{x+1}{x-1}\)

vậy \(A=\frac{x+1}{x-1}\)

c) thay vào ta được \(\frac{x+1}{x-1}=2\)

\(\Rightarrow\left(x-1\right).2=x+1\)

\(\Rightarrow2x-2=x+1\)

\(\Rightarrow2x-x=1+2\)

\(\Rightarrow x=3\)

vậy \(x=3\)thì \(A=2\)

13 tháng 4 2019

bài1   A=\(\left(\frac{3-x}{x+3}\cdot\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

=\(\left(-\frac{x-3\cdot\left(x+3\right)^2}{\left(x+3\right)^2\cdot\left(x-3\right)}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

=\(-\frac{x}{x+3}\cdot\frac{x+3}{3x^2}=\frac{-1}{3x}\)

b)  thế \(x=-\frac{1}{2}\)vào biểu thức A

 \(-\frac{1}{3\cdot\left(-\frac{1}{2}\right)}=\frac{2}{3}\)

c)  A=\(-\frac{1}{3x}< 0\)

VÌ (-1) <0  nên  3x>0

                        x >0

30 tháng 1 2019

\(\text{Giải}\)

\(A=\left(\frac{x+2}{2x-4}-\frac{2-x}{2x+4}+\frac{32}{4x^2-16}\right):\frac{x-1}{x-2}\)

\(A=\left(\frac{x+2}{2x-4}-\frac{2-x}{2x+4}+\frac{32}{\left(2x-4\right)\left(2x+4\right)}\right):\frac{x-1}{x-2}\)

\(A=\left(\frac{\left(x+2\right)\left(2x+4\right)}{\left(2x-4\right)\left(2x+4\right)}-\frac{\left(2-x\right)\left(2x-4\right)}{\left(2x-4\right)\left(2x+4\right)}+\frac{32}{\left(2x-4\right)\left(2x+4\right)}\right):\frac{x-1}{x-2}\)

\(A=\left(\frac{2x^2+8x+8}{\left(2x-4\right)\left(2x+4\right)}-\frac{4x^2-8+4x}{\left(2x-4\right)\left(2x+4\right)}+\frac{32}{\left(2x-4\right)\left(2x+4\right)}\right):\frac{x-1}{x-2}\)

\(A=\frac{2x^2+8x+8-4x^2+8-4x+32}{\left(2x-4\right)\left(2x+4\right)}:\frac{x-1}{x-2}\)

\(A=\frac{4x-2x^2+48}{\left(2x-4\right)\left(2x+4\right)}:\frac{x-1}{x-2}\)

\(A=\frac{2\left(2x-x^2+24\right)}{\left(2x-4\right)\left(2x+4\right)}:\frac{x-1}{x-2}=\frac{2\left(2x-x^2+24\right)\left(x-2\right)}{\left(2x-4\right)\left(2x+4\right)\left(x-1\right)}\)

\(=\frac{2\left(2x-x^2+24\right)\left(x-2\right)}{4\left(x-2\right)\left(x+2\right)\left(x-1\right)}=\frac{2x-x^2+24}{\left(x-2\right)\left(x-1\right)}\)

c, Bạn tự giải hệ pt nhé :)

10 tháng 3 2020

a, \(ĐKXĐ:x^3+8\ne0\Leftrightarrow x\ne-2\)

b, \(C=\frac{2x^2-4x+8}{x^3+8}=\frac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}=\frac{2}{x+2}\)

c, \(\left|2x+1\right|=3\Rightarrow\orbr{\begin{cases}2x+1=3\\2x+1=-3\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=-2\left(ktm\right)\end{cases}\Rightarrow x=1}\)

thay vào ta được : \(C=\frac{2}{1+2}=\frac{2}{3}\)

\(\frac{x}{x+2}=2\Leftrightarrow x=2x+4\)

\(\Leftrightarrow x=-4\left(tm\right)\)

18 tháng 12 2017

\(\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}=\frac{x^2+2x}{2\left(x+5\right)}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}=\)

\(=\frac{x\left(x^2+2x\right)+2\left(x+5\right)\left(x-5\right)+50-5x}{2x\left(x+5\right)}=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}=\)

\(=\frac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}=\frac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}=\frac{x\left(x^2-1+4\left(x-1\right)\right)}{2x\left(x+5\right)}=\frac{x\left(x-1\right)\left(x+5\right)}{2x\left(x+5\right)}\)

a/ Để biểu thức xác đinh => 2x(x+5) khác 0 => x khác 0 và x khác -5

b/ Gọi biểu thức là A. Rút gọn A ta được: 

\(A=\frac{x\left(x-1\right)\left(x+5\right)}{2x\left(x+5\right)}=\frac{x-1}{2}\left(x\ne0;x\ne-5\right)\)

A=1 => x-1=2 => x=3

c/ A=-1/2 <=> x-1=-1 => x=0

d/ A=-3 <=> x-1=-6  => x=-5