K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2020

Ta có: \(A=\frac{\sqrt{x}+7}{\sqrt{x}+4}=\frac{\left(\sqrt{x}+4\right)+3}{\sqrt{x}+4}=1+\frac{3}{\sqrt{x}+4}\)

a) Vì \(\sqrt{x}+4\ge4>3\left(\forall x\right)\)

\(\Rightarrow\frac{3}{\sqrt{x}+4}\) luôn không nguyên

=> A luôn không nguyên

b) Không thể tìm được giá trị nhỏ nhất của A, ta chỉ có thể tìm được GTLN:

\(\sqrt{x}+4\ge4\left(\forall x\right)\)

\(\Rightarrow\frac{3}{\sqrt{x}+4}\le\frac{3}{4}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\sqrt{x}=0\Rightarrow x=0\)

Vậy Max(A) = 7/4 khi x = 0

21 tháng 10 2020

Giúp mình với mình đang cần gấp. Thk you các pạn

16 tháng 8 2015

a) 

ĐKXĐ: \(x-4\ge0\text{ (1)};\text{ }x+4\sqrt{x-4}\ge0\text{ (2); }\frac{16}{x^2}-\frac{8}{x}+1>0\text{ (3)}\)

\(\left(1\right)\Leftrightarrow x\ge4\)

\(\left(2\right)\Leftrightarrow\left(\sqrt{x-4}+2\right)^2\ge0\text{ (đúng }\forall x\ge4\text{)}\)

\(\left(3\right)\Leftrightarrow\left(\frac{4}{x}-1\right)^2>0\Leftrightarrow\frac{4}{x}-1\ne0\Leftrightarrow x\ne4\)

Vậy ĐKXĐ là \(x>4\)

b)

\(A=\frac{\left|\sqrt{x-4}+2\right|+\left|\sqrt{x-4}-2\right|}{\left|\frac{4}{x}-1\right|}=\frac{\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|}{1-\frac{4}{x}}=\frac{x\left(\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|\right)}{x-4}\)

\(+\sqrt{x-4}\le2\Leftrightarrow0<\)\(x-4\le4\)

thì \(A=\frac{x\left(\sqrt{x-4}+2+2-\sqrt{x-4}\right)}{x-4}=\frac{4x}{x-4}=4+\frac{16}{x-4}\)

A nguyên khi \(\frac{16}{x-4}\)nguyên hay \(x-4\inƯ\left(16\right)\)

Mà \(0<\)\(x-4\le4\)

Nên \(x-4\in\left\{2;4\right\}\Rightarrow x\in\left\{6;8\right\}\)

\(+\text{Xét }\sqrt{x-4}>2\Leftrightarrow x-4>4\)

\(A=\frac{x\left(\sqrt{x-4}+2+\sqrt{x-4}-2\right)}{x-4}=\frac{2x\sqrt{x-4}}{x-4}=\frac{2x}{\sqrt{x-4}}\)

Nếu \(\sqrt{x-4}\)là số vô tỉ thì A là số vô tỉ.

Để A là hữu tỉ thì \(\sqrt{x-4}=t\text{ }\left(t\in Z;\text{ }t>4\right)\Rightarrow x=t^2+4\)

Khi đó, \(A=\frac{2\left(t^2+4\right)}{t}=2t+\frac{8}{t}\)

A nguyên khi \(\frac{8}{t}\) nguyên hay \(t=8\text{ (do }t>4\text{)}\)

\(t=\sqrt{x-4}=8\Leftrightarrow x=8^2+4=68\)

Vậy \(x\in\left\{6;8;68\right\}\)

c/

\(+0<\sqrt{x-4}\)\(<2\)

Thì \(A=4+\frac{16}{x-4}>4+\frac{16}{4}=8\)

\(+\sqrt{x-4}\ge2\)

\(A=\frac{2x}{\sqrt{x-4}}=2t+\frac{8}{t}\text{ (}t=\sqrt{x-4}\ge2\text{)}\)

 Mà \(t+\frac{4}{t}\ge2\sqrt{t.\frac{4}{t}}=4\)

\(\Rightarrow A\ge2.4=8\)

Dấu "=" xảy ra khi \(t=\frac{4}{t}\Leftrightarrow t=2\Leftrightarrow\sqrt{x-4}=2\Leftrightarrow x=8\)

Vậy GTNN của A là 8 khi x = 8.

 

 

28 tháng 12 2021

dấu sao kia là dấu nhân nhé

28 tháng 12 2021

1. \(x=\frac{1}{9}\) thỏa mãn đk: \(x\ge0;x\ne9\)

Thay \(x=\frac{1}{9}\) vào A ta có:

\(A=\frac{\sqrt{\frac{1}{9}}+1}{\sqrt{\frac{1}{9}}-3}=-\frac{1}{2}\)

2. \(B=...\)

    \(B=\frac{3\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{4x+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

    \(B=\frac{3x-9\sqrt{x}+x+3\sqrt{x}-4x-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

     \(B=\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

3. \(P=A:B=\frac{\sqrt{x}+1}{\sqrt{x}-3}:\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(P=\frac{\sqrt{x}+3}{-6}\)

Vì \(\sqrt{x}+3\ge3\forall x\)\(\Rightarrow\frac{\sqrt{x}+3}{-6}\le\frac{3}{-6}=-\frac{1}{2}\)

hay \(P\le-\frac{1}{2}\)

Dấu "=" xảy ra <=> x=0

30 tháng 9 2018

Giúp tớ nhanh nhanh nha!Cảm ơn rất rất nhiều.

21 tháng 11 2021

1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111