K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2016

a)\(\frac{\left(x-1\right)}{\sqrt{x}}\)

b) để P>0\(\Rightarrow\)\(\frac{\left(x-1\right)}{\sqrt{x}}>0\)

do \(\sqrt{x}>0\Rightarrow x-1>0\)

\(\Leftrightarrow x>1\)

c)P=\(\frac{8}{3}\)

25 tháng 6 2016

Giúp mình với


 

28 tháng 4 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne25\end{cases}}\)

\(A=\frac{x+3\sqrt{x}}{x-25}+\frac{1}{\sqrt{x}+5}\)

\(=\frac{x+3\sqrt{x}+\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)

\(=\frac{x+4\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)

\(=\frac{\sqrt{x}-1}{\sqrt{x}-5}\)

\(\Rightarrow P=\frac{\sqrt{x}-1}{\sqrt{x}-5}:\frac{\sqrt{x}+2}{\sqrt{x}-5}=\frac{\sqrt{x}-1}{\sqrt{x}+2}\)

b) Để P nguyên

\(\Leftrightarrow\sqrt{x}-1⋮\sqrt{x}+2\)

\(\Leftrightarrow3⋮\sqrt{x}+2\)

\(\Leftrightarrow\sqrt{x}+2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{-3;-1;-5;1\right\}\)

Mà \(\sqrt{x}\ge0,\forall x\)

\(\Leftrightarrow\sqrt{x}=1\)

\(\Leftrightarrow x=1\)

Vậy để P nguyên \(\Leftrightarrow x=1\)

19 tháng 6 2015

a) \(P=P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}+1-\frac{2x+\sqrt{x}}{\sqrt{x}}\)\(P=\frac{\sqrt{x}\left(\sqrt{x}^3-1\right)}{x+\sqrt{x}+1}+1-\frac{2\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}{x+\sqrt{x}+1}+1-2\sqrt{x}+2=x-\sqrt{x}+1-2\sqrt{x}+2=x-3\sqrt{x}+3\)

chắc cái này bạn chép sai đề. theo mình thì bài này tử mẫu đều triệt tiêu đc cho nhau. mình tự sửa đề nha. nếu đề là vậy thì pm để mình làm lại nha

b) \(P=0\Leftrightarrow x-3\sqrt{x}+3=0\Leftrightarrow\left(x-3\sqrt{x}+\frac{9}{4}\right)+\frac{3}{4}=\left(\sqrt{x}-\frac{3}{2}\right)^2+\frac{3}{4}>0\)với mọi x => k có giá trị nào của x thỏa mãn

30 tháng 1 2019

ĐK:x>0; x\(\ne1\)

\(P=\left(\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)^2}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}.\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

\(=\dfrac{x-1}{x}\)

30 tháng 1 2019

Rút gọn biểu thức chứa căn bậc haibiểu thức P

a: Thay x=2 vào B, ta được:

\(B=\dfrac{2}{\sqrt{2}-1}=2\sqrt{2}+2\)

 

11 tháng 8 2018

\(P=\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}+\frac{2+5\sqrt{x}}{4-x}\)\(\left(ĐKXĐ:x\ne4\right)\)

\(P=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\frac{-2-5\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(P=\frac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(P=\frac{3\sqrt{x}}{\sqrt{x}+2}\)

b) Với  \(x=3\)( thỏa mãn ĐKXĐ ) ta có  \(P=\frac{3\sqrt{3}}{\sqrt{3}+2}=-9+6\sqrt{3}\)

c) A ở đâu ???? '-'