K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 11 2017

Lời giải:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

\(\Rightarrow \left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)

\(\Leftrightarrow \frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=4\)

\(\Leftrightarrow \frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=\frac{4-2}{2}=1\) (do \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\) )

\(\Leftrightarrow \frac{a+b+c}{abc}=1\)

\(\Leftrightarrow a+b+c=abc\)

Do đó ta có đpcm.

26 tháng 11 2017

nhưng cô ơi trong đề chỉ nói 1/a+1/b+1/c=2 chứ có phải 1/a^2+1/b^2+1/c^2=2 đâu cô?

7 tháng 2 2020

\(\Rightarrow\frac{a+b+c}{abc}=\frac{1}{9}\Leftrightarrow\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}=\frac{2}{9}\)

Lại có \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=1\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}=1\)

Vậy 1/a^2+1/b^2+1/c^2=1-2/9=7/9 ( Sê đài )

7 tháng 2 2020

ko bt có sê đài ko nhưng thanks

22 tháng 11 2016

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}=4\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=4\)

=>\(2+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=4\)

=>\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=1\)

=>\(\frac{c+a+b}{abc}=1\)

=> a+b+c=abc (đpcm)

22 tháng 11 2016

Từ \(\left(1\right)\) suy ra : \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=4\)

Do \(\left(2\right)\) nên \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1,\) suy ra \(\frac{a+b+c}{abc}=1\\.\)

Do đó \(a+b+c=abc\)

3 tháng 1 2020

Ta có :

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=4\)

\(\Leftrightarrow2+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=4\)

\(\Leftrightarrow\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}=1\)

\(\Leftrightarrow\frac{a+b+c}{abc}=1\Leftrightarrow a+b+c=abc\left(đpcm\right)\)

20 tháng 11 2016

\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}=0\)

\(< =>\frac{a^2}{b+c}+a+\frac{b^2}{a+c}+b+\frac{c^2}{a+b}+c=a+b+c\)

\(< =>\frac{a^2+a\left(b+c\right)}{b+c}+\frac{b^2+b\left(c+a\right)}{c+a}+\frac{c^2+c\left(a+b\right)}{a+b}=a+b+c\)

\(< =>\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=1\) (chia cả 2 vế cho a+b+c)

4 tháng 1 2018

gọi 1/a2 + 1/b2 + 1/clà M ta có:

abc=a+b+c => 1 = 1/ab + 1/bc + 1/ac 

2 = 1/a+1/b+1/c => 4 = 1/a^2 + 1/b^2 + 1/c^2 + 2/ab + 2/ac + 2/cb 

=> 4 = 1/a^2 + 1/b^2 + 1/c^2 + 2(1/ab + 1/ac + 1/bc) = M + 2 

=> M = 4 - 2 = 2

4 tháng 1 2018

Ta có:

a+b+c=abc (1)

Chia cả hai vế của(1) cho abc,ta được:

1/bc+1/ac+1/ab=1 (*)

1/a+1/b+1/c=2 (2)

Nhân cả hai vế của(2) với: (1/a+1/b+1/c)

ta được:

(1/a+1b+1/c)(1/a+1/b+1/c)=2(1/a+1/b+1/c)

=>[(1/a)^2+(1/b)^2+(1/c)^2]+2(1/ab+1/bc+1/ac)=2(1/a+1/b+1/c)

Vì 1/ab+1/bc+1/ac=1 và 1/a+1/b+1/c=2

=>(1/a)^2+(1/b)^2+(1/c)^2=4-2=2

Vậy (1/a)^2+(1/b)^2+(1/c)^2=2

25 tháng 1 2017

(1/a+1/b+1/c)=2

=>(1/a+1/b+1/c)2=22=4

=>1/a2+1/b2+1/c2+2(1/ab+1/bc+1/ca)=4

=>2(1/ab+1/bc+1/ca)=4-(1/a2+1/b2+1/c2)=4-2=2 

=>1/ab+/bc+1/ca=1

=>(a+b+c)/abc=1

=>a+b+c=abc

25 tháng 1 2017

CO BAN NAO BIET THANG NAO TEN SUPER SAYGIAN GON KHONG NEU BIET THI NOI CHO MINH BIET NHA

7 tháng 12 2017

Ta có:\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=4\)

\(\Rightarrow2+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=4\Rightarrow\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}=2\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

\(\Rightarrow\frac{a}{abc}+\frac{b}{abc}+\frac{c}{abc}=1\Rightarrow\frac{a+b+c}{abc}=1\Rightarrow a+b+c=abc\)

\(\Rightarrowđpcm\)

7 tháng 12 2017

Ta có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{2}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}\)

\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)

\(\Rightarrow2^2=2+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)

\(\Leftrightarrow2=.2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)

\(\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=1\)

\(\Leftrightarrow\frac{a}{abc}+\frac{a}{abc}+\frac{b}{abc}=\frac{abc}{abc}\)

\(\Leftrightarrow a+b+c=abc\)

\(\RightarrowĐPCM\)