K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2020

Ta có: \(\frac{a}{a^,}+\frac{b^,}{b}=1\) \(\iff\) \(ab+a^,b^,=a^,b\) \(\iff\) \(abc+a^,b^,c=a^,bc\left(1\right)\)

Ta có:\(\frac{b}{b^,}+\frac{c^,}{c}=1\) \(\iff\) \(bc+b^,c^,=b^,c\) \(\iff\) \(a^,bc+a^,b^,c^,=a^,b^,c\left(2\right)\)

Từ\(\left(1\right)\) và \(\left(2\right)\) cộng vế với vế ta được : \(abc+a^,b^,c+a^,bc+a^,b^,c^,=a^,bc+a^,b^,c\)

\(\implies\) \(abc+a^,b^,c^,=0\left(đpcm\right)\)

25 tháng 9 2017

Ta có : \(\frac{a}{a'}+\frac{b}{b'}=1\) ; \(\frac{b}{b'}+\frac{c}{c'}=1\)

\(\Rightarrow\left(\frac{a}{a'}+\frac{b}{b'}\right)=\left(\frac{b}{b'}+\frac{c}{c'}\right)\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\Rightarrow\frac{a+b-b+c}{a'+b'-b'+c}=\frac{a+1+c}{a'+1+c'}=\frac{a+c}{a'+c'}\)

\(\Rightarrow\frac{a}{a'}=\frac{c}{c'}\)

=> a.c' = a'.c

=> a.c' = a'.c = b.c' = b'.c = a.b' = a'.b

=> abc là số nguyên âm hoặc dương (*)

=> a'b'c' là số nguyên âm hoặc dương (**)

Từ (*) và (**)     

=> -(abc) + a'b'c' = 0 (1)

=> abc+ -(a'b'c') = 0 (2)

Từ (1) và (2) => đpcm

25 tháng 9 2017

Làm chi tiết ra hộ mình

4 tháng 12 2018

\(\frac{a}{a'}\)+\(\frac{b'}{b}\)=1 =>\(\frac{a}{a'}\)*\(\frac{b}{b'}\)+\(\frac{b'}{b}\)*\(\frac{b}{b'}\)=> \(\frac{ab}{a'b'}\)+1=\(\frac{b'}{b}\)=1-\(\frac{c'}{c}\)

=> \(\frac{ab}{a'b'}=\frac{-c}{c'}=>abc=-a'b'c'=>abc+a'b'c'=0\)

nhớ k cho mik nha bạn và cho mik hỏi mik có thể kết bạn với bạn ko?????

4 tháng 12 2018

cho mik xin lỗi mik đánh nhầm : Nhớ k cho mik nha 

30 tháng 12 2015

làm dc thì làm đi hỏi chi cho mệt, mà cái hình DQ và TLN đẹp đấy

30 tháng 12 2015

A / A' + B' / B=1 --->AB + A'B' = A'B (1)

B / B' + C'/ C=1--->BC +B'C' = B'C(2)

nhan 2 ve  cua pt 1 cho C

nhan 2 ve cua pt 2 cho A'

Cộng hai vế của pt (1) và (2) rồi triệt tiêu ta sẽ có kết quả. tự giải nhé

17 tháng 7 2018

Ta có: \(\frac{a}{a'}+\frac{b'}{b}=1\Leftrightarrow\frac{ab+a'b'}{a'b}=1\Leftrightarrow ab+a'b'=a'b\Leftrightarrow abc+a'b'c=a'bc\left(1\right)\)

Lại có: \(\frac{b}{b'}+\frac{c'}{c}=1\Leftrightarrow\frac{bc+b'c'}{b'c}=1\Leftrightarrow bc+b'c'=b'c\Leftrightarrow a'bc+a'b'c'=a'b'c\left(2\right)\)

Từ (1) và (2) => \(abc+a'b'c+a'bc+a'b'c'=a'bc+a'b'c\)

\(\Leftrightarrow abc+a'b'c'=a'bc-a'bc+a'b'c-a'b'c\)

\(\Leftrightarrow abc+a'b'c'=0\left(đpcm\right)\)

26 tháng 10 2016

KHÓ QUÁ 
GIÚP MÌNH VỚI
 

26 tháng 10 2016

Vì \(\frac{a}{a'}+\frac{b'}{b}=1\)  nên ab+a'b'=a'b'               (1)

\(\frac{b}{b'}+\frac{c'}{c}=1\)nên bc+b'c'=b'c'                   (2)

nhân 2 vế của (1) với c, của (2) với a' rồi cộng theo từng vế hai đẳng thức , ta suy ra abc+a'b'c'=0

1 tháng 3 2020

+)Ta có :\(\frac{a}{a^,}+\frac{b^,}{b}=1\) \(\iff\) \(ab+a^,b^,=a^,b\) ​​\(\iff\)​ \(abc+a^,b^,c=a^,b^,c\left(1\right)\)

+)Ta có :\(\frac{b}{b^,}+\frac{c^,}{c}=1\)\(\iff\) \(bc+b^,c^,=b^,c\)\(\iff\) \(a^,bc+a^,b^,c^,=a^,b^,c^,\left(2\right)\)

Cộng \(\left(1\right)\) với \(\left(2\right)\) vế với vế ta được: \(abc+a^,b^,c+a^,bc+a^,b^,c^,=a^,bc+a^,b^,c\)

\(\implies\)\(abc+a^,b^,c^,=0\left(đpcm\right)\)

2 tháng 4 2017

a chịu