Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P = ...
\(\Leftrightarrow P=x^3z-x^3y^2+y^3x-y^3z^2+z^3y-z^3x^2+x^2y^2z^2-xyz\)\(\Leftrightarrow P=\left(x^3z-x^2z^3\right)-\left(x^3y^2-x^2y^2z^2\right)+\left(xy^3-y^3z\right)+\left(yz^3-xyz\right)\)\(\Leftrightarrow P=x^2z\left(x-z^2\right)-x^2y^2\left(x-z^2\right)+y^3\left(x-z^2\right)-yz\left(x-z^2\right)\)\(\Leftrightarrow P=\left(x-z^2\right)\left(x^2z-x^2y^2+y^3-yz\right)\)
\(\Leftrightarrow P=\left(x-z^2\right)\left[\left(x^2z-x^2y^2\right)+\left(y^3-yz\right)\right]\)
\(\Leftrightarrow P=\left(x-z^2\right)\left[-x^2\left(y^2-z\right)+y\left(y^2-z\right)\right]\)
\(\Leftrightarrow P=\left(x-z\right)^2\left(y^2-z\right)\left(y-x^2\right)\)
\(\Leftrightarrow P=abc\left(đpcm\right)\)
Sửa lại
P = ...
\(\Leftrightarrow P=...\)
\(\Leftrightarrow P=...-...+\left(xy^3-y^3z^2\right)+...\)
a ) \(\left(x+y+z\right)^2=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)
Biến đổi vế trái ta được :
\(\left(x+y+z\right)^2=\left(x+y+z\right)\left(x+y+z\right)\)
\(=x^2+xy+xz+xy+y^2+yz+zx+zy+z^2\)
\(=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)
Vậy \(\left(x+y+z\right)^2=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)
a ) \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)
\(=x^3-3x^2y+3xy^2-y^3+y^3-3y^2z+3yz^2-z^3+z^3-3z^2x+3zx^2-x^3\)
\(=-3x^2y+3xy^2-3y^2z+3yz^2-3z^2x+3zx^2\)
b)\(x\left(y^2-z^2\right)+z\left(x^2-y^2\right)+y\left(z^2-x^2\right)\)
=\(x\left(y^2-z^2\right)-\left(y^2-z^2+z^2-x^2\right)z+y\left(z^2-x^2\right)\)
=\(x\left(y^2-z^2\right)-z\left(y^2-z^2\right)-z\left(z^2-x^2\right)+y\left(z^2-x^2\right)\)
=\(\left(y^2-z^2\right)\left(x-z\right)+\left(z^2-x^2\right)\left(y-z\right)\)
=\(\left(y-z\right)\left(z-x\right)\left(-\left(y+z\right)+z+x\right)\)
=\(\left(y-z\right)\left(z-x\right)\left(x-y\right)\)
c)\(x^3+3xy+y^3\)
\(=x^3+y^3+3xy=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)
\(=\left(x^2-xy+y^2\right)+3xy\)
\(=x^2-xy+y^2+3xy\)
\(=x^2+2xy+y^2=\left(x+y\right)^2\)
\(=1^2=1\)