Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài tương đương với \(2x^2+2y^2+2xy-2x+2y+2=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}\)
\(M=x^{2020}+y^{2020}+2020^{x+y}=1^{2020}+\left(-1\right)^{2020}+2020^{1-1}=1+1+1=3\)
x2 + y2 + xy - x + y + 1 = 0
<=> 2( x2 + y2 + xy - x + y + 1 ) = 2.0
<=> 2x2 + 2y2 + 2xy - 2x + 2y + 2 = 0
<=> ( x2 + 2xy + y2 ) + ( x2 - 2x + 1 ) + ( y2 + 2y + 1 ) = 0
<=> ( x + y )2 + ( x - 1 )2 + ( y + 1 )2 = 0 (*)
Vì \(\hept{\begin{cases}\left(x+y\right)^2\\\left(x-1\right)^2\\\left(y+1\right)^2\end{cases}}\ge0\forall x,y\Rightarrow\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\ge0\)
Đẳng thức xảy ra ( tức (*) ) <=> \(\hept{\begin{cases}x+y=0\\x-1=0\\y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}\)
=> x = 1 ; y = -1
Thế vào M ta được
M = 12020 + (-1)2020 + 20201-1
= 1 + 1 + 1
= 3
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
\(\:x\left(x^2+x+1\right)-x^2\left(x+1\right)-x+5\)
\(=x^3+x^2+x-x^3-x^2-x+5=5\)
Vậy biểu thức ko phụ thuộc vào biến x
\(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)+2x^4\)
\(=x^4-x^3y+x^3y-x^2y^2+x^2y^2-xy^3+y^3x-y^4+2x^4\)
\(=3x^4-y^4\)
C = y( x^4-y^4)-x^4y+y^5
=x^4y-y^5-x^4y+y^5
=0
Vậy...........................................
Xét \(x\ne0\)
Ta có: ( 4x + 15y + 1 )( 4|x| + x2 + x + y ) = 305
\(\Rightarrow\) 4x + 15y + 1 và 4|x| + x2 + x + y cùng lẻ
Xét 4|x| + x2 + x + y có 4|x| + x2 + x chẵn (do x khác 0) nên y phải lẻ.
Xét 4x + 15y + 1 có 4x chẵn (do x khác 0) và 15y lẻ ( do y lẻ ) nên 4x + 15y + 1 chẵn (vô lí)
Vậy x = 0
Thay vào phương trình, ta được:
\(\left(15y+1\right)\left(1+y\right)=305\)
Dễ thấy \(15y+1\ge1+y\left(doy\inℕ\right)\)nên ta xét hai trường hợp:
\(TH1:\hept{\begin{cases}15y+1=305\\y+1=1\end{cases}}\Rightarrow\hept{\begin{cases}y=\frac{304}{15}\\y=0\end{cases}}\left(L\right)\)
\(TH1:\hept{\begin{cases}15y+1=61\\y+1=5\end{cases}}\Rightarrow\hept{\begin{cases}y=4\\y=4\end{cases}}\left(tm\right)\)
Vậy cặp số (x,y) thỏa mãn là (0;4)
a: \(A=x^2+y^2=\left(x+y\right)^2-2xy=15^2-2\cdot50=125\)
b:\(B=x^4+y^4\)
\(=\left(x^2+y^2\right)^2-2x^2y^2\)
\(=125^2-2\cdot2500\)
=10625
c: \(x-y=\sqrt{\left(x+y\right)^2-4xy}=\sqrt{15^2-4\cdot50}=5\)
\(C=x^2-y^2=\left(x-y\right)\left(x+y\right)=15\cdot5=75\)