Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức tam giác trong tam giác ABC, ta có:
7 – 1 < CA < 7 + 1
6 < CA < 8
Mà CA là số nguyên
CA = 7 cm.
Vậy CA = 7 cm.
b) Áp dụng bất đẳng thức tam giác trong tam giác ABC, ta có:
AB + CA > BC
2 + CA > 6
CA > 4 cm
Mà CA là số nguyên và CA < 6 ( vì BC = 6 cm là cạnh lớn nhất của tam giác)
CA = 5 cm
Vậy CA = 5 cm.
A B C H
a) Vì góc B bằng góc C (tam giác ABC cân tại A)
Và AB =AC
=> tam giác ABH bằng tam giác ACH (cạnh huyền góc nhọn)
b) Trong tam giác ABC cân tại A có AH là đường cao => AH đồng thời là đường phân giác => AH là p/g góc BAC
c) C/m AH là đường trung tuyến như câu b => HB = HC = 3cm
tam giác ABH vuông tại H => \(AH^2+BH^2=AB^2\) => \(AH^2+3^2=5^2\) =>AH = 4cm
đúng nha
a, xét 2 tam giác ABH và ACH vuông tại H ta có:
AB=AC(gt),góc B=góc C từ đó suy ra nha!
b,trong tam giác cân dg cao vừa là dg phân giác trung trực, trung tuyến luôn nên ta suy ra AH là ............(đcpcm)
c, ta có BH=HC=BC/2=6/2=3
áp dụng đ/lí py-ta-go cho tam giác vuông ABH ta có
AB^2=AH^2+BH^2
suy ra: AH^2=AB^2-BH^2
=5^2- 3^2= 25-9 đến đây dễ lắm lun rồi đó bạn!!
Theo bất đẳng thức tam giác ABC ta có:
AC – BC < AB < AC + BC
Theo độ dài BC = 1cm, AC = 7cm
7 - 1 < AB < 7 + 1
6 < AB < 8 (1)
Vì độ dài AB là một số nguyên thỏa mãn (1) nên AB = 7cm
Do đó ∆ ABC cân tại A vì AB = AC = 7cm
Theo bất đẳng thức tam giác ABC ta có:
AC + BC > AB > AC - BC
hay 7 + 1 > AB > 7 - 1
8 > AB > 6
=> AB = 7 vì 8 > 7 > 6.
Vậy AB = 7cm.
Vì AB = AC = 7cm nên tam giác ABC là tam giác cân và cân tại A.
\(\Delta ABC = \Delta DEG\) nên AB = DE, BC = EG, CA = GD.
Vậy độ dài các cạnh của tam giác DEG lần lượt là: \(DE = 3\)cm,\(EG = 4\)cm,\(GD = 6\)cm.