Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=2\left[\left(m+n\right)^3-3mn\left(m+n\right)\right]-3\left[\left(m+n\right)^2-2mn\right]\)
\(=2\left(1-3mn\right)-3\left(1-2mn\right)\)
\(=2-6mn-3+6mn=-1\)
b: \(=m^3+3m^3n^3+n^3+m^6+n^6\)
\(=\left(m+n\right)^3-3mn\left(m+n\right)+3\left(mn\right)^3+\left(m^3+n^3\right)^2-2m^3n^3\)
\(=1-3mn+3m^3n^3-2m^3n^3+1\)
\(=2-3mn+m^3n^3\)
Bài 1:
b:
x=9 nên x+1=10
\(M=x^{10}-x^9\left(x+1\right)+x^8\left(x+1\right)-x^7\left(x+1\right)+...-x\left(x+1\right)+x+1\)
\(=x^{10}-x^{10}-x^9+x^9+x^8-x^8-x^7+...-x^2-x+x+1\)
=1
c: \(N=\left(1+2+2^2+2^3+2^4\right)+2^5\left(1+2+2^2+2^3+2^4\right)+2^{10}\left(1+2+2^2+2^3+2^4\right)\)
\(=31\left(1+2^5+2^{10}\right)⋮31\)
a) điều kiện \(n\in Z\)
\(n^2+2n+4=n^2+2n+1+3=\left(n+1\right)^2+3\) chia hết cho 11
\(\Leftrightarrow\left(n+1\right)^2+3\) thuộc ước của 11 là \(\pm1;\pm11\)
ta có : \(\left\{{}\begin{matrix}\left(n+1\right)^2+3=1\\\left(n+1\right)^2+3=-1\\\left(n+1\right)^2+3=11\\\left(n+1\right)^2+3=-11\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(n+1\right)^2=-2\left(vôlí\right)\\\left(n+1\right)^2=-4\left(vôlí\right)\\\left(n+1\right)^2=8\\\left(n+1\right)^2=-14\left(vôlí\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+1=\sqrt{8}\\n+1=-\sqrt{8}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}n=\sqrt{8}-1\left(loại\right)\\n=-\sqrt{8}-1\left(loại\right)\end{matrix}\right.\) vậy không có giá trị nào thỏa mãn
b) điều kiện \(x\in Z\)
\(n^2+2n-4=n^2+2n+1-5=\left(n+1\right)^2-5\) chia hết cho 11
\(\Leftrightarrow\left(n+1\right)^2-5\) thuộc ước của 11 là \(\pm1;\pm11\)
ta có : \(\left\{{}\begin{matrix}\left(n+1\right)^2-5=1\\\left(n+1\right)^2-5=-1\\\left(n+1\right)^2-5=11\\\left(n+1\right)^2-5=-11\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(n+1\right)^2=6\\\left(n+1\right)^2=4\\\left(n+1\right)^2=16\\\left(n+1\right)^2=-6\left(vôlí\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}n+1=\sqrt{6}\\n+1=-\sqrt{6}\end{matrix}\right.\\\left\{{}\begin{matrix}n+1=2\\n+1=-2\end{matrix}\right.\\\left\{{}\begin{matrix}n+1=4\\n+1=-4\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}n=\sqrt{6}-1\left(loại\right)\\n=-\sqrt{6}-1\left(loại\right)\end{matrix}\right.\\\left\{{}\begin{matrix}n=1\left(tmđk\right)\\n=-3\left(tmđk\right)\end{matrix}\right.\\\left\{{}\begin{matrix}n=3\left(tmđk\right)\\n=-5\left(tmđk\right)\end{matrix}\right.\end{matrix}\right.\)
vậy \(n=1;n=-3;n=3;n=-5\)
Các bạn chú ý dấu { và [. Các dấu này khác nhau và việc dùng sai chúng dẫn tới lời giải của bài toán sai hoàn toàn.
- Dấu { có nghĩa là " và " hay " đồng thời xảy ra" thường chỉ dùng trong tìm điều kiện xác định hoặc những cái nào cần nhiều hơn 2 điều kiện.
- Dấu [ có nghĩa là hoặc : nghĩa là cái này xảy ra hoặc cái kia xảy ra, không nhất thiết cả hai cái cùng xảy ra.
Ví dụ: \(\left(n+1\right)^2\) là ước của 5. Như vậy có 4 trường hợp độc lập xảy ra và việc tồn tại của trường hợp này độc lập so với trường hợp khác nên ta dùng dấu [ để chia các trường hợp. Nếu dùng dấu { - có nghĩa là mọi điều kiện phải thỏa mãn - điều này sai về lô-gic khi \(\left(n+1\right)^2\) không thể vừa bằng 1 và vừa bằng 5 được.
Các bạn chú ý các lỗi sai về lô-gic sẽ bị trừ điểm rất nặng trong bài thi.