Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+2ab+b^2+4a+4b+2015\\ =\left(a+b\right)^2+4\left(a+b\right)+2015\\ =\left(a+b\right)\left(a+b+4\right)+2015\\ =1.\left(1+4\right)+2015\\ =5+2015\\ =2020\)
\(A=\left(a+b\right)^2+4\left(a+b\right)+2015=2020\)
a, chắc bạn chép nhầm đề rồi đó nếu mà là 3ab thì k làm đc đâu
M=a3 + a2 - b3 + b2 + 3ab2 -2ab +3ab2
= (a-b)3 +(a-b)2
= 343+49=392
b, P= -(3x+4x2+1/4x-2014)
= - [ (2x)2 -4x+1 +x +1/4x - 2015]
= -[ (2x-1)2- (2x-1)2/4x +1 -2015]
Max P = 2014 X=1/2
Có: \(a^2+b^2=1-2ab\)
\(\Rightarrow a^2+b^2+2ab=1\Rightarrow\left(a+b\right)^2=1\)
Mà: \(a>0;b>0\Rightarrow a+b>0\)
Do đó: \(a+b=1\)
Có: \(M=a^3+b^3+3ab=a^3+b^3+3ab\left(a+b\right)=\left(a+b\right)^3=1^3=1\)
Ta có : M=a3+b3+3ab
=(a+b)(a2-ab+b2)+3ab=(a+b)(a2+b2-ab)+3ab
Ma : a2+b2=1-2ab
\(\Rightarrow\)(a+b)(a2+b2-ab)+3ab
=(a+b)(1-2ab-ab)+3ab
=(a+b)(1-3ab)+3ab
=a+b
Ma : a và b là hai số dương \(\Rightarrow\)a>0 va b>0
\(\Rightarrow\)Gia tri cua bieu thuc M=a3+b3+3ab = a+b .
\(\text{Ta có: }\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0.\)
\(\Leftrightarrow bc+ac+ab=0\Rightarrow\hept{\begin{cases}bc=-ac-ab\\ac=-bc-ab\\ab=-bc-ac\end{cases}}\)
\(\Rightarrow BT\text{hức}=\frac{bc}{a^2+2bc}+\frac{ac}{b^2+2ac}+\frac{ab}{c^2+2ab}\)
\(=\frac{bc}{a^2-ac-ab+bc}+\frac{ac}{b^2-bc-ab+ac}+\frac{ab}{c^2-bc-ac+ab}\)
\(=\frac{bc}{a\left(a-b\right)-c\left(a-b\right)}+\frac{ac}{b\left(b-a\right)-c\left(b-a\right)}+\frac{ab}{c\left(c-a\right)-b\left(c-a\right)}\)
\(=\frac{bc}{\left(a-c\right)\left(a-b\right)}-\frac{ac}{\left(b-c\right)\left(a-b\right)}+\frac{ab}{\left(a-c\right)\left(b-c\right)}\)
\(=\frac{bc\left(b-c\right)-ac\left(a-c\right)+ab\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{b^2c-bc^2-a^2c+ac^2+ab\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\frac{c\left(b^2-a^2\right)-c^2\left(b-a\right)+ab\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{c^2\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+ab\left(a+b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\frac{\left(a-b\right)\left(c^2-ac-bc+ab\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{c\left(c-b\right)-a\left(c-b\right)}{\left(b-c\right)\left(a-c\right)}=\frac{\left(a-c\right)\left(b-c\right)}{....}=1\)
Lâu ko lm đổi dấu hơi thừa ra!! ko hiểu chỗ nào thì ib mk giải thích cho
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
\(\Leftrightarrow\frac{bc+ca+ab}{abc}=0\)
\(\Leftrightarrow bc+ca+ab=0\)
\(\Leftrightarrow\hept{\begin{cases}bc=-ab-ca\\ca=-ab-bc\\ab=-ca-bc\end{cases}}\)
Ta có : \(A=\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\)
\(\Leftrightarrow A=\frac{a^2}{a^2+bc-ab-ca}+\frac{b^2}{b^2+ac-ab-bc}+\frac{c^2}{c^2+ab-ca-bc}\)
\(\Leftrightarrow A=\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-a\right)\left(b-c\right)}+\frac{c^2}{\left(c-a\right)\left(c-b\right)}\)
\(\Leftrightarrow A=\frac{a^2}{\left(a-b\right)\left(a-c\right)}-\frac{b^2}{\left(b-c\right)\left(a-b\right)}+\frac{c^2}{\left(a-c\right)\left(b-c\right)}\)
\(\Leftrightarrow A=\frac{a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(\Leftrightarrow A=\frac{a^2\left(b-c\right)-b^2\left[\left(b-c\right)+\left(a-b\right)\right]+c^2\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(\Leftrightarrow A=\frac{a^2\left(b-c\right)-b^2\left(b-c\right)-b^2\left(a-b\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(\Leftrightarrow A=\frac{\left(a^2-b^2\right)\left(b-c\right)-\left(b^2-c^2\right)\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(\Leftrightarrow A=\frac{\left(a+b\right)\left(a-b\right)\left(b-c\right)-\left(b+c\right)\left(b-c\right)\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(\Leftrightarrow A=\frac{\left(a-b\right)\left(b-c\right)\left[\left(a+b\right)-\left(b+c\right)\right]}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(\Leftrightarrow A=\frac{\left(a-b\right)\left(a-c\right)\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=1\)
a(a + 2) + b(b - 2) - 2ab
= a2 + 2a + b2 - 2b - 2ab
= (a2 - 2ab + b2) +(2a - 2b)
= (a - b)2 + 2(a - b)
= 72 + 2.7
= 49 + 14 =63
\(a\left(a+2\right)+b\left(b-2\right)-2ab=a^2+2a+b^2-2b-2ab\)
\(=\left(a^2-2ab+b^2\right)+\left(2a-2b\right)=\left(a-b\right)^2+2\left(a-b\right)\)
Với \(a-b=7\)thì biểu thức có giá trị là: \(7^2-7=49-7=42\)