Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
anh ơi cứ lấy trên gg đi. các thầy cô cũng lấy trên gg mà anh.em học lớp 5 mà thấy đề cương của cô em giao chẳng khác gì đề cương mẹ em lấy trên mạng về cho em cả.hoặc ko anh có thể vào nhóm CON TỰ HỌC trên FACEBOOK ạ. ở trong đấy có nhiều thứ lắm ạ. anh cứ lấy đi.ở trong đấy đề thi dc kiểm nghiệm hểtồi nên anh ko phải lo ko chuẩn đâu ạ.mẹ em cũng toàn lấy đề trên đó về cho em làm thôi.
\(A=log_m\left(8m\right)=log_mm+log_m8\)
\(=1+log_m8\)
\(=1+\dfrac{1}{log_8m}=1+\dfrac{1}{log_{2^3}m}=1+\dfrac{1}{\dfrac{1}{3}\cdot log_2m}\)
\(=1+\dfrac{1}{\dfrac{1}{3}a}=1+1:\dfrac{a}{3}=1+\dfrac{3}{a}=\dfrac{a+3}{a}\)
=>Chọn A
Câu 55)
Ta có tọa độ các điểm là:\(M(1,5),N(3,-1),P(6,0)\)
\(\Rightarrow MN=2\sqrt{10};MP=5\sqrt{2};NP=\sqrt{10}\)
Nhận thấy \(MN^2+NP^2=MP^2\) nên tam giác tạo bởi ba điểm là tam giác vuông.
Đáp án C
Câu 56)
Đặt \(z=a+bi(a,b\in\mathbb{R})\)
Khi đó
\(|z+2-3i|=|\overline{z}-4+i|\Leftrightarrow |(a+2)+i(b-3)|=|(a-4)+i(1-b)|\)
\(\Leftrightarrow (a+2)^2+(b-3)^2=(a-4)^2+(b-1)^2\)
\(\Leftrightarrow 3a-b-1=0\)
Đáp án A
Câu 57:
Câu này thử thôi:
Biết tọa độ \(A(1,3),B(-2,2),C(-4,-2),D(1,-7),M(-3,4),N(1,-3),P(-3,2)\)
Tọa độ trọng tâm:
\(G(ABC)=\left(\frac{1-2-4}{3},\frac{3+2-2}{3}\right)=(\frac{-5}{3},1)=\left(\frac{-3+1-3}{3},\frac{4-3+2}{3}\right)=G(MNP)\)
nên A đúng
Nhìn trên mp tọa độ thì C đúng
Tính được độ dài các cạnh \(AB,MN,BC,NP\)
Tam giác $ABC$ và $MNP$ đồng dạng thì \(\frac{AB}{MN}=\frac{BC}{NP}\). Dựa vào độ dài vừa tính ta suy ra \(\frac{AB}{MN}\neq \frac{BC}{NP}\)
nên đáp án B sai
1 |
B |
6 |
B |
11 |
C |
16 |
A |
21 |
D |
2 |
C |
7 |
A |
12 |
A |
17 |
B |
22 |
D |
3 |
A |
8 |
B |
13 |
B |
18 |
C |
23 |
C |
4 |
B |
9 |
B |
14 |
A |
19 |
A |
24 |
A |
5 |
D |
10 |
C |
15 |
D |
20 |
D |
25 |
C |
Câu 22)
Bạn dùng nguyên hàm từng phần thôi
Ta có \(I=\int x(1-x)e^{-x}dx=(ax^2+bx+c)e^{-x}\)
Đặt \(\left\{\begin{matrix} u=1-x\\ dv=xe^{-x}dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=-dx\\ v=\int xe^{-x}dx\end{matrix}\right.\)
Tại $v$ cũng áp dụng nguyên hàm từng phần, suy a \(v=-xe^{-x}-e^{-x}\)
Do đó \(I=(-xe^{-x}-e^{-x})(1-x)-\int (x+1)e^{-x}dx\)
\(I=(x^2-1)e^{-x}-v-\int e^{-x}dx\)
\(I=(x^2-1)e^{-x}-(-xe^{-x}-e^{-x})-(-e^{-x})\)
\(I=e^{-x}(x^2+x+1)+c\)
Do đó \(a=b=c=1\rightarrow a+b+c=3\)
Câu 23:
Câu này y hệt như câu 22. Bạn chỉ cần tìm $a,b,c$ sao cho
\(\int\frac{20x^2-30x+7}{\sqrt{2x-3}}dx=(ax^2+bx+c)\sqrt{2x-3}\)
Gợi ý: Đặt \(\sqrt{2x-3}=t\), ta sẽ tìm được \(\int\frac{20x^2-30x+7}{\sqrt{2x-3}}dx=(4x^2-2x+1)\sqrt{2x-3}\)
\(\Rightarrow a=4,b=-2,c=1\). Đáp án C
Câu 25:
Đạo hàm của $f(x)=\frac{1}{2x-1}$ thì nghĩa là \(f(x)=\int\frac{1}{2x-1}dx\)
\(\Leftrightarrow f(x)=\frac{1}{2}\int\frac{d(2x-1)}{2x-1}=\frac{1}{2}\ln|2x-1|+c\)
Có \(f(1)=1\leftrightarrow c=1\). Do đó \(f(x)=\frac{1}{2}\ln|2x-1|+1\rightarrow f(5)=\frac{1}{2}\ln 9+1=\ln 3+1\)
Đáp án D
TL :
Tìm giá trị lớn nhất M của hàm số y = x^4 - 2x2^ + 1 trên đoạn [0;2]
ht