K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2016

Ta có \(\left(2-x\right)\left(2-y\right)\left(2-z\right)>0\to8-4\left(x+y+z\right)+2\left(xy+yz+zx\right)-xyz>0\)
Suy ra \(2\left(x+y+z\right)-\left(xy+yz+zx\right)<\frac{8-xyz}{2}<4.\)

17 tháng 6 2016

http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/

16 tháng 6 2016

bài của tui mà -_-

30 tháng 3 2018

kho the

Đề lạ thế bạn ơi! Vế trái luôn không âm mà vế phải luôn không dương nên đây là điều hiển nhiên.

Mình nghĩ đề phải chứng minh thế này:

\(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)

Nếu thế thì cách làm như sau:

Ta có: Do x, y, z không âm nên:

\(\left\{{}\begin{matrix}\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\\\left(\sqrt{y}-\sqrt{z}\right)^2\ge0\\\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y-2\sqrt{xy}\ge0\\y+z-2\sqrt{yz}\ge0\\z+x-2\sqrt{xz}\ge0\end{matrix}\right.\)

\(\Rightarrow2\left(x+y+z\right)\ge2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\right)\)

\(\Leftrightarrow x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\left(đpcm\right)\)

Dấu "=" xảy ra khi và chỉ khi \(\sqrt{x}=\sqrt{y}=\sqrt{z}\Leftrightarrow x=y=z\)

 

 

17 tháng 2 2017

Áp dụng BĐT Cauchy-Schwarz ta có: 

\(\frac{x}{x+\sqrt{3x+yz}}=\frac{x}{x+\sqrt{\left(x+y+z\right)x+yz}}=\frac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}\)

\(\le\frac{x}{x+\sqrt{\left(\sqrt{xy}+\sqrt{xz}\right)^2}}=\frac{x}{x+\sqrt{xy}+\sqrt{xz}}=\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Tương tự với 2 BĐT trên ta có: 

\(\frac{y}{y+\sqrt{3y+xz}}\le\frac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}};\frac{z}{z+\sqrt{3z+xy}}\le\frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Cộng theo vế ta có: \(VT\le\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)

27 tháng 5 2018

\(VT=6\left(x^2+y^2+z^2\right)+10\left(xy+yz+xz\right)+2\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)

\(=6\left(x+y+z\right)^2-2\left(xy+yz+xz\right)+2\frac{9}{2x+y+z+x+2y+z+x+y+2z}\)

\(\ge6\left(x+y+z\right)^2-2\frac{\left(x+y+z\right)^2}{3}+2\frac{9}{4\left(x+y+z\right)}\)

\(=\: 6\cdot\left(\frac{3}{4}\right)^2-2\cdot\frac{\left(\frac{3}{4}\right)^2}{3}+2\cdot\frac{9}{4\cdot\frac{3}{4}}=9\)

11 tháng 6 2016

chứng minh cái gì đấy hả bạn ơi ?

11 tháng 6 2016

akl quên vế sau