Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(8,\dfrac{bc}{\sqrt{3a+bc}}=\dfrac{bc}{\sqrt{\left(a+b+c\right)a+bc}}=\dfrac{bc}{\sqrt{a^2+ab+ac+bc}}\)
\(=\dfrac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{\dfrac{b}{a+b}+\dfrac{c}{a+c}}{2}\)
Tương tự cho các số còn lại rồi cộng vào sẽ được
\(S\le\dfrac{3}{2}\)
Dấu "=" khi a=b=c=1
Vậy
\(7,\sqrt{\dfrac{xy}{xy+z}}=\sqrt{\dfrac{xy}{xy+z\left(x+y+z\right)}}=\sqrt{\dfrac{xy}{xy+xz+yz+z^2}}\)
\(=\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}\le\dfrac{\dfrac{x}{x+z}+\dfrac{y}{y+z}}{2}\)
Cmtt rồi cộng vào ta đc đpcm
Dấu "=" khi x = y = z = 1/3
Lời giải:
Chọn điểm $I$ sao cho \(\overrightarrow{IA}-2\overrightarrow{IB}=0\)
\(\Leftrightarrow (1-x_I, 2-y_I, 1-z_I)-2(2-x_I, -1-y_I, 3-z_I)=0\)
\(\Rightarrow \left\{\begin{matrix} 1-x_I-2(2-x_I)=0\\ 2-y_I-2(-1-y_I)=0\\ 1-z_I-2(3-z_I)=0\end{matrix}\right.\Rightarrow I(3,-4, 5)\)
Có:
\(MA^2-2MB^2=(\overrightarrow {MI}+\overrightarrow{IA})^2-2(\overrightarrow{MI}+\overrightarrow{IB})^2\)
\(=-MI^2+IA^2-2IB^2+2\overrightarrow{MI}(\overrightarrow{IA}-2\overrightarrow{IB})\)
\(=-MI^2+IA^2-2IB^2\)
Do đó để \(MA^2-2MB^2\) max thì \(MI^2\) min. Do đó $M$ là hình chiếu vuông góc của $I$ xuống mặt phẳng $Oxy$
Gọi d là đường thẳng đi qua $I$ và vuông góc với (Oxy)
Khi đó: \(d:\left\{\begin{matrix} x=3\\ y=-4\\ z=5+t\end{matrix}\right.\)
$M$ thuộc d và $(Oxy)$ thì ta có thể suy ra ngay đáp án D
Lời giải:
Ta có: \(y'=x^4-3x^2+2=0\Leftrightarrow \left[\begin{matrix} x=\pm 1\\ x=\pm \sqrt{2}\end{matrix}\right.\)
Lập bảng biến thiên, hoặc xét:
\(y''=4x^3-6x\)
\(\Rightarrow \left\{\begin{matrix} y''(1)=-2< 0\\ y''(-1)=2>0\\ y''(\sqrt{2})=2\sqrt{2}>0\\ y''(-\sqrt{2})=-2\sqrt{2}< 0\end{matrix}\right.\)
Do đó các điểm cực tiểu của hàm số là \(x=-1; x=\sqrt{2}\)
Suy ra tổng các giá trị cực tiểu của hàm số :
\(f(-1)+f(\sqrt{2})=\frac{10074}{5}+\frac{4\sqrt{2}}{5}+2016=\frac{20154+4\sqrt{2}}{5}\)
Đáp án B.
Đặt \(\left(\dfrac{x}{6};\dfrac{y}{3};\dfrac{z}{2}\right)=\left(a;b;c\right)\Rightarrow2^{6a}+4^{3b}+8^{2c}=4\)
\(\Leftrightarrow64^a+64^b+64^c=4\)
Áp dụng BĐT Cô-si:
\(4=64^a+64^b+64^c\ge3\sqrt[3]{64^{a+b+c}}\Rightarrow64^{a+b+c}\le\dfrac{64}{27}\)
\(\Rightarrow a+b+c\le log_{64}\left(\dfrac{64}{27}\right)\Rightarrow M=log_{64}\left(\dfrac{64}{27}\right)\)
Lại có: \(x;y;z\ge0\Rightarrow a;b;c\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}64^a\ge1\\64^b\ge1\\64^c\ge1\end{matrix}\right.\) \(\Rightarrow\left(64^b-1\right)\left(64^c-1\right)\ge0\)
\(\Rightarrow64^{b+c}+1\ge64^b+64^c\) (1)
Lại có: \(b+c\ge0\Rightarrow64^{b+c}\ge1\Rightarrow\left(64^a-1\right)\left(64^{b+c}-1\right)\ge0\)
\(\Rightarrow64^{a+b+c}+1\ge64^a+64^{b+c}\) (2)
Cộng vế (1);(2) \(\Rightarrow4=64^a+64^b+64^c\le64^{a+b+c}+2\)
\(\Rightarrow64^{a+b+c}\ge2\Rightarrow a+b+c\ge log_{64}2\)
\(\Rightarrow N=log_{64}2\)
\(\Rightarrow T=2log_{64}\left(\dfrac{64}{27}\right)+6log_{64}\left(2\right)\approx1,4\)
\(4^{a+b-1}-\left(\frac{1}{2}\right)^{3a+b-2}+5a+3b-4=0\)
\(\Leftrightarrow2^{2a+2b-2}-2^{-3a-b+2}+5a+3b-4=0\)
\(\Leftrightarrow2^{2a+2b-2}+2b+2b-2=2^{-3a-b+2}-3a-b+2\)(1)
Xét hàm \(f\left(t\right)=2^t+t\)
\(f'\left(t\right)=2^t.ln\left(2\right)+1>0,\forall t\inℝ\)
suy ra \(f\left(t\right)\)đồng biến trên \(ℝ\).
(1) suy ra \(2a+2b-2=-3a-b+2\Leftrightarrow b=\frac{4-5a}{3}\)
\(P=a^2+2ab+b^2=\left(a+b\right)^2=\left(a+\frac{4-5a}{3}\right)^2\ge0\)
Dấu \(=\)khi \(a=2\).
Vậy \(minP=0\)khi \(a=2,b=-2\)
Lời giải:
Ta có: \(y'=3x^2-6(m+1)x+12m\)
\(y'=0\Leftrightarrow x^2-2(m+1)x+4m=0(*)\)
Nếu $A,B$ là hai điểm cực trị của đths thì $x_A,x_B$ là hai nghiệm của pt $(*)$
Theo định lý Viete: \(x_A+x_B=2(m+1)\)
Nếu $O$ là trọng tâm của tam giác $ABC$ thì:
\(\frac{x_A+x_B+x_C}{3}=x_O=0\Rightarrow \frac{2(m+1)-1}{3}=0\)
\(\Rightarrow m=-\frac{1}{2}\)
Bây giờ ta chỉ cần thử lại với giá trị của $m$ vừa tìm được thì \(\frac{y_A+y_B+y_C}{3}=y_O=0\) hay không (đã ktra và thấy thỏa mãn)
Do đó $m=\frac{-1}{2}$
Lời giải:
"3 cực trị" bạn nói hẳn là hoành độ.
Ta có \(y'=x^3+mx^2-x-m=0\)
\(\Leftrightarrow (x+m)(x-1)(x+1)=0\)
Để hàm có ba cực trị thì trước tiên \(m\neq \pm 1\)
Khi đó, hoành độ ba điểm cực trị là \(-1,1,-m\)
TH1 Nếu một cấp số nhân gồm 3 số trên có \(1,-1\) đứng cạnh nhau thì công bội có thể là \(\pm 1\Rightarrow m=\pm 1\) (vô lý)
TH2: \(-m\) nằm giữa.
Giả sử ta có CSN là \(-1,-m,1\) thì \(\left\{\begin{matrix} -m=-1q\\ 1=-mq\end{matrix}\right.\Rightarrow \left\{\begin{matrix} m=q\\ -1=mq\end{matrix}\right.\Rightarrow -1=m^2\) (vô lý)
Tương tự SCN là \(1,-m,-1\) cũng vô lý.
Vậy không có $m$ thỏa mãn
Lời giải:
Ta có: Theo BĐT Cô-si thì:
\(4=2^a+4^b+8^c=2^a+2^{2b}+2^{3c}\)
\(\geq 3\sqrt[3]{2^a.2^{2b}.2^{3c}}=3\sqrt[3]{2^{a+2b+3c}}\)
\(\Rightarrow a+2b+3c\leq 3\log_2(\frac{4}{3})\)
\(\frac{a}{6}+\frac{b}{3}+\frac{c}{2}=\frac{a+2b+3c}{6}\leq \frac{\log_2(\frac{4}{3})}{2}\)
hay \(m=(\frac{a}{6}+\frac{b}{3}+\frac{c}{2})_{\max}=\frac{\log_2(\frac{4}{3})}{2}\)