K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2023

bn tham khảo nha

https://hoc24.vn/cau-hoi/cho-ba-so-thuc-abc-duong-chung-minh-rangsqrtdfraca3a3leftbcright3sqrtdfracb3b3leftcaright3sqrtdfracc3c.5222680437292

24 tháng 11 2017

Lớn hơn hoặc = 1

25 tháng 11 2017

mạng có đó tương tự như z mà làm theo !!

25 tháng 6 2023

Xem lại câu hỏi

đúng r ạ !!

NV
20 tháng 1 2019

Thử với \(a=b=c=0.1\), BĐT trở thành \(\dfrac{1}{10}\ge1\Rightarrow\) đề sai

4 tháng 12 2017

Ta có:

\(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=9\\ \Leftrightarrow a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ac}=9\\ \Leftrightarrow\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=2\)

\(\Rightarrow\dfrac{\sqrt{a}}{a+2}+\dfrac{\sqrt{b}}{b+2}+\dfrac{\sqrt{c}}{c+2}=\dfrac{\sqrt{a}}{a+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}+\dfrac{\sqrt{b}}{b+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}+\dfrac{\sqrt{c}}{c+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}\\ =\dfrac{\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)}+\dfrac{\sqrt{b}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)}+\dfrac{\sqrt{c}}{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{a}+\sqrt{c}\right)}\\ =\dfrac{\sqrt{a}\left(\sqrt{b}+\sqrt{c}\right)+\sqrt{b}\left(\sqrt{a}+\sqrt{c}\right)+\sqrt{c}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{a}+\sqrt{c}\right)}\\ =\dfrac{2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{a}+\sqrt{c}\right)}\\ =\dfrac{4}{\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2\left(\sqrt{b}+\sqrt{c}\right)^2\left(\sqrt{a}+\sqrt{c}\right)^2}}\)\(=\dfrac{4}{\sqrt{\left(a+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\left(b+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\left(c+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)}}\\ =\dfrac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)

5 tháng 3 2019

Bài này có trong đề thi HSG 9 của huyện hay tỉnh nào đấy :)) được cái thầy t bắt cày đi cày lại cả chục cái đề thi nên bài này t nhớ lắm :))
Với x là số dương, áp dụng bđt Cô-si

\(\sqrt{x^3+1}=\sqrt{\left(x+1\right)\left(x^2-x+1\right)}\le\frac{x+1+x^2-x+1}{2}=\frac{x^2+2}{2}\)

\(\Rightarrow\sqrt{\frac{1}{x^3}}\ge\frac{2}{x^2+2}\) (*)

Dấu (=) xảy ra khi x = 2

Áp dụng bđt (*)

\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}=\sqrt{\frac{1}{1+\left(\frac{b+c}{a}\right)^3}}\ge\frac{2}{\left(\frac{b+c}{a}\right)^2+2}=\frac{2a^2}{\left(b+c\right)^2+2a^2}\)

\(\Rightarrow\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}\ge\frac{2a^2}{2\left(b^2+c^2\right)+2a^2}=\frac{a^2}{a^2+b^2+c^2}\left(1\right)\)

CMTT :

\(\sqrt{\frac{b^3}{b^3+\left(a+c\right)^3}}\ge\frac{b^2}{a^2+b^2+c^2}\) (2)

\(\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge\frac{c^2}{a^2+b^2+c^2}\) (3)

Cộng vế với vế của (1) ; (2) ; (3) ; ta được ĐPCM

\(\sqrt{\frac{1}{x^3}}\ge\frac{2}{x^2+2}\Rightarrow\sqrt{\frac{1}{1+\left(\frac{b+c}{a}\right)^3}}\ge\frac{2}{\left(\frac{b+c}{a}\right)^2+2}\)

Có nhầm chỗ nào ko vậy bạn chứ ở dưới mẫu có cộng 1 nữa mà