\(\frac{x^2}{y+z}+\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2020

Cay, đánh xong rồi tự nhiên bấm hủy :v

Ta có:\(x+y+z=xyz\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)

Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\rightarrow\left(a;b;c\right)\Rightarrow ab+bc+ca=1\)

Khi đó:

\(A=\frac{a^2\left(1+2b\right)}{b}+\frac{b^2\left(1+2c\right)}{c}+\frac{c^2\left(1+2a\right)}{a}\)

\(=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+2\left(a^2+b^2+c^2\right)\)

\(\ge\frac{\left(a+b+c\right)^2}{a+b+c}+2\cdot\frac{\left(a+b+c\right)^2}{3}\)

\(=a+b+c+\frac{2\left(a+b+c\right)^2}{3}\)

\(\ge\sqrt{3\left(ab+bc+ca\right)}+\frac{6\left(ab+bc+ca\right)}{3}\)

\(=2+\sqrt{3}\)

Đẳng thức xảy ra tại \(x=y=z=\sqrt{3}\)

6 tháng 8 2020

zZz Cool Kid_new zZz. Sai đề rồi bạn êii !

Nếu bạn đặt như vậy thì 

\(A=\frac{y-2}{x^2}+\frac{z-2}{y^2}+\frac{x-2}{z^2}\)

\(=\frac{a^2\left(1-2b\right)}{b}+\frac{b^2\left(1-2c\right)}{c}+\frac{c^2\left(1-2a\right)}{a}\)

\(=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-2.\left(a^2+b^2+c^2\right)\)

23 tháng 4 2021

Từ giả thiết ta có :

\(x+y+z=xyz\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)

ta có : \(Q=\frac{y+2}{x^2}+\frac{z+2}{y^2}+\frac{x+2}{z^2}\)

\(=\frac{\left(x+1\right)+\left(y+1\right)}{x^2}+\frac{\left(y+1\right)+\left(z+1\right)}{y^2}+\frac{\left(z+1\right)+\left(x+1\right)}{z^2}-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(=\left(x+1\right)\left(\frac{1}{z^2}+\frac{1}{x^2}\right)+\left(y+1\right)\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\left(z+1\right)\left(\frac{1}{y^2}+\frac{1}{z^2}\right)-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\ge\frac{2\left(x+1\right)}{zx}+\frac{2\left(y+1\right)}{xy}+\frac{2\left(z+1\right)}{yz}-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(=2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+2\)

Áp dụng bđt \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

Dấu " = " xảy ra khi và chỉ khi a = b = c

Ta có \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\ge3\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=3\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\sqrt{3}\)

Do đó : \(Q\ge\sqrt{3}+2\). Dấu " = " xảy ra 

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\\z+y+z=xyz\end{cases}\Leftrightarrow x=y=z=\sqrt{3}}\)

Vậy Min \(Q=\sqrt{3}+2\)khi \(x=y=z=\sqrt{3}\)

12 tháng 12 2018

\(A=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\).Áp dụng BĐT Cauchy-Schwarz,ta có:

\(=\left(1-\frac{1}{x+1}\right)+\left(1-\frac{1}{y+1}\right)+\left(1-\frac{1}{z+1}\right)\)

\(=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(\ge3-\frac{9}{\left(x+y+z\right)+\left(1+1+1\right)}=\frac{3}{4}\)

Dấu "=" xảy ra khi x = y = z = 1/3

Vậy A min = 3/4 khi x=y=z=1/3

12 tháng 12 2018

Bỏ chữ "Áp dụng bđt Cauchy-Schwarz,ta có:"giùm mình,nãy đánh nhầm ở bài làm trước mà quên xóa đi!

5 tháng 1 2016

\(A=\frac{1089}{400}x+\frac{1}{x}+\frac{1089}{400}y+\frac{1}{y}+\frac{1089z}{400}+\frac{1}{z}-\left(\frac{689}{400}x+\frac{689}{400}y+\frac{689}{400z}\right)\)

\(\ge2\sqrt{\frac{1089}{400}}+2\sqrt{\frac{1089}{400}}+2\sqrt{\frac{1089}{400}}-\frac{689}{400}\cdot\frac{20}{11}\)

       = 1489/220

Dấu '' = '' xảy ra khi x = y= z = 20/33

5 tháng 1 2016

Thắng à, có giá trị nhỏ hơn đó

22 tháng 6 2017

Ờ thì AM-GM (là Cô si ko âm đây)

\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{y+z}\cdot\frac{y+z}{4}}=2\cdot\frac{x}{2}=x\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\frac{y^2}{x+z}+\frac{x+z}{4}\ge y;\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\)

Cộng theo vế 3 BĐT trên ta có:

\(P+\frac{2\left(x+y+z\right)}{4}\ge x+y+z\Leftrightarrow P\ge1\)

ĐẲng thức xảy ra khi \(x=y=z=\frac{2}{3}\)

21 tháng 6 2017

Áp dụng bất đẳng thức Cauchy - Schwarz dưới dạng Engel ta có :

\(P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=\frac{2}{2}=1\)

Dấu "=" xảy ra <=> \(x=y=z=\frac{2}{3}\)

Vậy \(P_{min}=1\) tại \(x=y=z=\frac{2}{3}\)