Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Chắc bn ghi thiếu đề :}\)
\(\hept{\begin{cases}a+b+c=0\\a^2+b^2+c^2=1\end{cases}}\)
\(Tính\)\(a^4+b^4+c^4\)
\(Giải:\)\(\text{Đặt}\)\(M=a^4+b^4+c^4\)
\(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2\)
\(1=M=\left(2a^2b^2+2b^2c^2+2c^2a^2\right)\)
\(M=1-\left(2a^2b^2+2b^2c^2+2c^2a^2\right)=1-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
\(0=1+2ab+2ac+2bc\)
\(2\left(ab+ac+bc\right)=-1\Rightarrow ab+ac+bc=-\frac{1}{2}\)
\(\left(ab+ac+bc\right)^2=a^2b^2+a^2c^2+b^2c^2+2\left(a^2bc+ab^2c+abc^2\right)\)
\(\frac{1}{4}=^2b^2+a^2c^2+b^2c^2+2abc\left(a+b+c\right)\)
\(\Rightarrow^2b^2+a^2c^2+b^2c^2=\frac{1}{4}.0\left(vì\right)a+b+c=0\)
\(M=1-2.\frac{1}{4}=\frac{1}{2}\)
\(a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)
Xét \(a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
\(\Leftrightarrow a=b=c\)
\(\RightarrowĐPCM\)
Đặt \(\left(b+c-a;c+a-b;a+b-c\right)\rightarrow\left(x,y,z\right)\)
\(\Rightarrow x+y+z=a+b+c\)
Ta có:\(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(\left(x+y\right)^3-3\left(x+y\right)z\left(x+y+z\right)+z^3-x^3-y^3-z^3\)
\(=x^3+3xy\left(x+y\right)+y^3-3\left(x+y\right)z\left(x+y+z\right)+z^3-x^3-y^3-z^3\)
\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)
\(=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
\(=3\cdot2a\cdot2b\cdot2c=24abc\)
Ta có:
a + b + c = 0
=> (a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ac) = 0
Lại có a2 + b2 + c2 = 1
=> 1 + 2(ab + bc+ ac) = 0
<=> ab + bc + ac = \(\frac{-1}{2}\)
<=> (ab + bc + ac)2 = a2b2 + b2c2 + a2c2 + 2a2bc + 2ab2c + 2abc2 = \(\frac{1}{4}\)
<=> a2b2 + b2c2 + a2c2 + 2abc(a + b + c) = \(\frac{1}{4}\)
<=> a2b2 + b2c2 + a2c2 + 2abc.0 = \(\frac{1}{4}\)
<=> a2b2 + b2c2 + a2c2 = \(\frac{1}{4}\)
Có: (a2 + b2 + c2)2 = a4 + b4 + c4 + 2a2b2 + 2b2c2 + 2a2c2 = 12 = 1
<=> a4 + b4 + c4 + 2(a2b2 + b2c2 + a2c2) = 1
<=> a4 + b4 + c4 + 2.\(\frac{1}{4}\) = 1
<=> a4 + b4 + c4 = \(\frac{1}{2}\)
Ta có: \(a+b+c=0\)
\(\Leftrightarrow a+b=-c\)
\(\Leftrightarrow a^2+2ab+b^2=c^2\)
\(\Leftrightarrow a^2+b^2-c^2=-2ab\)
\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2-a^2c^2-b^2c^2\right)=4a^2b^2\)
\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+a^2c^2+b^2c^2\right)\)
Ta lại có: \(a^2+b^2+c^2=2009\)
\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=2009^2\)
\(\Leftrightarrow2\left(a^4+b^4+c^4\right)=2009^2\)
\(\Leftrightarrow a^4+b^4+c^4=\frac{2009^2}{2}\)
\(c^2=\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)
\(\Rightarrow x^2+y^2\ge\frac{c^2}{a^2+b^2}\) (đpcm)
Nếu làm như kia thì fải là nhỏ hơn hoặc bằng chứ
Nhân chia đổi chiều mà