K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2017

Do a2+b2+c2=1 và a3+b3+c3=1

=> a2+b2+c2=a3+b3+c3=1  <=> a2(1-a)+b2(1-b)+c2(1-c)=0

Do a2+b2+c2=1 => a, b, c \(\le\)1

=> (1-a); (1-b) và (1-c) \(\ge\)0

=> a2(1-a)+b2(1-b)+c2(1-c)\(\ge\)0

Dấu "=" xảy ra khi và chỉ khi: a2(1-a)=b2(1-b)=c2(1-c)=0. Do a2+b2+c2=1 nên ta có các trường hợp:

\(\hept{\begin{cases}a=b=0;c=1\\a=1;b=c=0\\b=1;a=c=0\end{cases}}\)

Trong tất cả các trường hợp thì S=1

Đáp số: S=1

26 tháng 9 2017

Thanks bn nha Bùi Thế Hào

12 tháng 8 2016

a, Từ x+y=1

=>x=1-y

Ta có: \(x^3+y^3=\left(1-y\right)^3+y^3=1-3y+3y^2-y^3+y^3\)


\(=3y^2-3y+1=3\left(y^2-y+\frac{1}{3}\right)=3\left(y^2-2.y.\frac{1}{2}+\frac{1}{4}+\frac{1}{12}\right)\)

\(=3\left[\left(y-\frac{1}{2}\right)^2+\frac{1}{12}\right]=3\left(y-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\) với mọi y

=>GTNN của x3+y3 là 1/4

Dấu "=" xảy ra \(< =>\left(y-\frac{1}{2}\right)^2=0< =>y=\frac{1}{2}< =>x=y=\frac{1}{2}\) (vì x=1-y)

Vậy .......................................

b) Ta có: \(P=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{y+x}\)

\(=\left(\frac{x^2}{y+z}+x\right)+\left(\frac{y^2}{z+x}+y\right)+\left(\frac{z^2}{y+z}+z\right)-\left(x+y+z\right)\)

\(=\frac{x\left(x+y+z\right)}{y+z}+\frac{y\left(x+y+z\right)}{z+x}+\frac{z\left(x+y+z\right)}{y+z}-\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}-1\right)\)

Đặt \(A=\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}\)

\(A=\left(\frac{x}{y+z}+1\right)+\left(\frac{y}{z+x}+1\right)+\left(\frac{z}{y+x}+1\right)-3\)

\(=\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}+\frac{x+y+z}{y+x}-3\)

\(=\left(x+y+z\right)\left(\frac{1}{y+x}+\frac{1}{y+z}+\frac{1}{z+x}\right)-3\)

\(=\frac{1}{2}\left[\left(x+y\right)+\left(y+z\right)+\left(z+x\right)\right]\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)-3\ge\frac{9}{2}-3=\frac{3}{2}\)

(phần này nhân phá ngoặc rồi dùng biến đổi tương đương)

\(=>P=\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}-1\right)\ge2\left(\frac{3}{2}-1\right)=1\)

=>minP=1

Dấu "=" xảy ra <=>x=y=z

Vậy.....................

Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .Bài 4 : Cho các...
Đọc tiếp

Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :

\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .

Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :

\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)

Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :

\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .

Bài 4 : Cho các số dương a,b,c . Chứng minh :

\(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)

Bài 5: Cho x,y là hai số thực thỏa mãn :(x+y)2+7.(x+y)+y2+10=0 . Tìm giá trị lớn nhất và nhỏ nhất của biểu thức A=x+y+1

Bài 6: Tìm giá trị nhỏ nhất biểu thức : \(P=\frac{x^4+2x^2+2}{x^2+1}\)

Bài 7 : CHo các số dương a,b,c . Chứng minh bất đẳng thức :

\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge4\times\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)

 

6
3 tháng 11 2019

neu de bai bai 1 la tinh x+y thi mik lam cho

4 tháng 11 2019

đăng từng này thì ai làm cho 

\(a^2\left(b+c\right)=b^2\left(a+c\right)\)

\(a^2b+a^2c-b^2a-b^2c=0\)

\(ab\left(a+b\right)-c\left(a-b\right)\left(a+b\right)=0\)

\(\left(a+b\right)\left(ab-ac+bc\right)=0\)

\(\hept{\begin{cases}a+b=0\\ab-ac+bc=0\end{cases}}\)

\(M=c^2\left(a+b\right)=c^2\left(0\right)=0\)

15 tháng 2 2019

theo đề  \(-1\le a\le2\Leftrightarrow\left(a-2\right)\left(a+1\right)\le0\Leftrightarrow a^2-a-2\le0\)

tương tự

\(b^2-b-2\le0\)

\(c^2-c-2\le0\)

nên \(a^2-a-2+c^2-c-2+b^2-b-2\le0\)

\(a^2+c^2+b^2-6\le0\Leftrightarrow a^2+c^2+b^2\le6\)

27 tháng 8 2019

Áp dụng t/c dãy tỉ số bằng nhau, ta được:

\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

\(\Rightarrow\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b}{c}=2\)

\(\Rightarrow P=2.2.2=8\)

27 tháng 8 2019

Xét \(a+b+c=0\)

\(\Rightarrow P=\frac{a+b}{c}.\frac{b+c}{a}.\frac{c+a}{b}=\frac{\left(-a\right)\left(-b\right)\left(-c\right)}{abc}=-1\)

Xét \(a+b+c\ne0\)thì ta có:

\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

\(\Rightarrow a+b=2c;b+c=2a;c+a=2b\)

\(\Rightarrow P=\frac{a+b}{c}.\frac{b+c}{a}.\frac{c+a}{b}=\frac{\left(2a\right)\left(2b\right)\left(2c\right)}{abc}=8\)