Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Từ x+y=1
=>x=1-y
Ta có: \(x^3+y^3=\left(1-y\right)^3+y^3=1-3y+3y^2-y^3+y^3\)
\(=3y^2-3y+1=3\left(y^2-y+\frac{1}{3}\right)=3\left(y^2-2.y.\frac{1}{2}+\frac{1}{4}+\frac{1}{12}\right)\)
\(=3\left[\left(y-\frac{1}{2}\right)^2+\frac{1}{12}\right]=3\left(y-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\) với mọi y
=>GTNN của x3+y3 là 1/4
Dấu "=" xảy ra \(< =>\left(y-\frac{1}{2}\right)^2=0< =>y=\frac{1}{2}< =>x=y=\frac{1}{2}\) (vì x=1-y)
Vậy .......................................
b) Ta có: \(P=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{y+x}\)
\(=\left(\frac{x^2}{y+z}+x\right)+\left(\frac{y^2}{z+x}+y\right)+\left(\frac{z^2}{y+z}+z\right)-\left(x+y+z\right)\)
\(=\frac{x\left(x+y+z\right)}{y+z}+\frac{y\left(x+y+z\right)}{z+x}+\frac{z\left(x+y+z\right)}{y+z}-\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}-1\right)\)
Đặt \(A=\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}\)
\(A=\left(\frac{x}{y+z}+1\right)+\left(\frac{y}{z+x}+1\right)+\left(\frac{z}{y+x}+1\right)-3\)
\(=\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}+\frac{x+y+z}{y+x}-3\)
\(=\left(x+y+z\right)\left(\frac{1}{y+x}+\frac{1}{y+z}+\frac{1}{z+x}\right)-3\)
\(=\frac{1}{2}\left[\left(x+y\right)+\left(y+z\right)+\left(z+x\right)\right]\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)-3\ge\frac{9}{2}-3=\frac{3}{2}\)
(phần này nhân phá ngoặc rồi dùng biến đổi tương đương)
\(=>P=\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}-1\right)\ge2\left(\frac{3}{2}-1\right)=1\)
=>minP=1
Dấu "=" xảy ra <=>x=y=z
Vậy.....................
\(a^2\left(b+c\right)=b^2\left(a+c\right)\)
\(a^2b+a^2c-b^2a-b^2c=0\)
\(ab\left(a+b\right)-c\left(a-b\right)\left(a+b\right)=0\)
\(\left(a+b\right)\left(ab-ac+bc\right)=0\)
\(\hept{\begin{cases}a+b=0\\ab-ac+bc=0\end{cases}}\)
\(M=c^2\left(a+b\right)=c^2\left(0\right)=0\)
Áp dụng t/c dãy tỉ số bằng nhau, ta được:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b}{c}=2\)
\(\Rightarrow P=2.2.2=8\)
Xét \(a+b+c=0\)
\(\Rightarrow P=\frac{a+b}{c}.\frac{b+c}{a}.\frac{c+a}{b}=\frac{\left(-a\right)\left(-b\right)\left(-c\right)}{abc}=-1\)
Xét \(a+b+c\ne0\)thì ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow a+b=2c;b+c=2a;c+a=2b\)
\(\Rightarrow P=\frac{a+b}{c}.\frac{b+c}{a}.\frac{c+a}{b}=\frac{\left(2a\right)\left(2b\right)\left(2c\right)}{abc}=8\)
Do a2+b2+c2=1 và a3+b3+c3=1
=> a2+b2+c2=a3+b3+c3=1 <=> a2(1-a)+b2(1-b)+c2(1-c)=0
Do a2+b2+c2=1 => a, b, c \(\le\)1
=> (1-a); (1-b) và (1-c) \(\ge\)0
=> a2(1-a)+b2(1-b)+c2(1-c)\(\ge\)0
Dấu "=" xảy ra khi và chỉ khi: a2(1-a)=b2(1-b)=c2(1-c)=0. Do a2+b2+c2=1 nên ta có các trường hợp:
\(\hept{\begin{cases}a=b=0;c=1\\a=1;b=c=0\\b=1;a=c=0\end{cases}}\)
Trong tất cả các trường hợp thì S=1
Đáp số: S=1
Thanks bn nha Bùi Thế Hào