Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)(Tính chất dãy tỉ số bằng nhau)
=> \(\frac{a^{1994}}{b^{1994}}=\frac{c^{1994}}{d^{1994}}=\frac{\left(a+c\right)^{1994}}{\left(b+d\right)^{1994}}=\frac{a^{1994}+c^{1994}}{b^{1994}+d^{1994}}\)(Tính chất dãy tỉ số bằng nhau)
=> \(\frac{\left(a+c\right)^{1994}}{\left(b+d\right)^{1994}}=\frac{a^{1994}+c^{1994}}{b^{1994}+d^{1994}}\)
=> Đpcm
Câu 2 tớ đăng phía dưới rồi đó.
Câu 3 đang định đăng lên thì cậu đăng là sao hả?
Ta có a : b : c = m : (m + n) : (m + 2n) Hay \(\frac{a}{m}=\frac{b}{m+n}=\frac{c}{m+2n}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{m}=\frac{b}{m+n}=\frac{c}{m+2n}=\frac{a-b}{m-\left(m+n\right)}=\frac{b-c}{\left(m+n\right)-\left(m+2n\right)}=\frac{c-a}{\left(m+2n\right)-m}\)
=> \(\frac{a-b}{-n}=\frac{b-c}{-n}=\frac{c-a}{2n}\)=> \(\frac{-2\left(a-b\right)}{2n}=\frac{-2\left(b-c\right)}{2n}=\frac{c-a}{2n}\)
=> -2(a - b) = -2(b - c) = c - a
=> (c- a)2 = [-2(a - b)].[-2(b - c)] = 4(a - b)(b - c)
Giải:
Ta có: \(b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\)
Đặt \(\dfrac{a}{b}=\dfrac{b}{c}=k\)
+) \(k^2=\dfrac{a}{b}.\dfrac{b}{c}=\dfrac{a}{c}\) (1)
+) \(k=\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{2011b}{2011c}=\dfrac{a+2011b}{b+2011c}\) ( t/c dãy tỉ số bằng nhau )
\(\Rightarrow k^2=\left(\dfrac{a+2011b}{b+2011c}\right)^2=\dfrac{\left(a+2011b\right)^2}{\left(b+2011c\right)^2}\) (2)
Từ (1), (2) \(\Rightarrow\dfrac{a}{c}=\dfrac{\left(a+2011b\right)^2}{\left(b+2011c\right)^2}\left(đpcm\right)\)
Giải:
Từ hằng đẳng thức: \(\left(a+b\right)^2=a^2+2ab+b\) ta có:
\(VP=\dfrac{\left(a+2011b\right)^2}{\left(b+2011c\right)^2}=\dfrac{a^2+2.2011ab+\left(2011b\right)^2}{b^2+2.2011bc+\left(2011c\right)^2}\)
\(=\dfrac{a^2+2.2011ab+2011^2ac}{ac+2.2011bc+2011^2c^2}\)
\(=\dfrac{a\left(a+2.2011b+2011^2c\right)}{c\left(a+2.2011b+2011^2c\right)}=\dfrac{a}{c}=VT\)
Vậy \(\dfrac{a}{c}=\dfrac{\left(a+2011b\right)^2}{\left(b+2011c\right)^2}\) (Đpcm)
Nguyễn Thị Linh Chi: Em có cách khác ạ. (cách này em làm trên lớp thường ngày.Và cũng khác đơn giản ạ)
ĐK: b,d ≠ 0 ; b≠d
Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\).Đặt \(\frac{a}{c}=\frac{b}{d}=k\Rightarrow\hept{\begin{cases}a=kc\\b=kd\end{cases}}\).Thay vào:
\(\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(kc+kd\right)^2}{k^2c^2+k^2d^2}=\frac{\left[k\left(c+d\right)\right]^2}{k^2\left(c^2+d^2\right)}=\frac{\left(c+d\right)^2}{c^2+d^2}^{\left(đpcm\right)}\)
b) Ta có:
\(\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\Rightarrow\frac{1}{c}.2=\frac{a}{ab}+\frac{b}{ab}\)
\(\Rightarrow\frac{2}{c}=\frac{a+b}{ab}.\)
\(\Rightarrow2ab=\left(a+b\right).c\)
\(\Rightarrow ab+ab=ac+bc\)
\(\Rightarrow ab-bc=ac-ab\)
\(\Rightarrow b.\left(a-c\right)=a.\left(c-b\right)\)
\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\left(đpcm\right).\)
Chúc bạn học tốt!
a,b,c tỉ lệ với m, m+n, m+2n => \(\frac{a}{m}=\frac{b}{m+n}=\frac{c}{m+2n}=k\)
=> \(a=mk;\)\(b=\left(m+n\right)k=mk+nk\); \(c=\left(m+2n\right)k=mk+2nk\)
Ta có: \(VT=4\left(a-b\right)\left(b-c\right)=4\left(mk-mk-nk\right)\left(mk+nk-mk-2nk\right)\)
\(=4\left(-nk\right)\left(-nk\right)=4n^2k^2\)
\(VP=\left(c-a\right)^2=\left(mk+2nk-mk\right)^2=\left(2nk\right)^2=4n^2k^2\)
suy ra: đpcm