Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì B nằm giữa A và C nên A B → = k A C → cùng hướng và AB < AC nên 0 < k < 1.
Chọn C.
bài này chỉ ở dạng trung trung thôi, có 2 cái link 1 tổng quát 2 hiệu quát ko biết giúp j dc ko
-tổng quát: Học tại nhà - Toán - Toán hay hay
-hiệu quát: Học tại nhà - Toán - (Bài Toán Thách Thức )
BĐT dạng k hay n là t ngu lắm ko giúp dc :v
Lời giải:
Ta thực hiện chứng minh đẳng thức trên đúng bằng quy nạp
Với $n=2$: \((a+b)^=a^2+2ab+b^2=C^0_2a^2b^0+C^1_2ab+C^2_2a^0b^2\) (đúng)
................
Giả sử đẳng thức đúng đến $n=t$ $(t\in\mathbb{Z}>2$), tức là \((a+b)^t=\sum ^t_{k=0}C^k_ta^{t-k}b^k\)
Ta cần chứng minh nó cũng đúng với $n=t+1$. Thật vậy:
\((a+b)^{t+1}=(a+b)^t(a+b)=(a+b)\sum ^{t}_{k=0}a^{t-k}b^k\)
\(=C^0_ta^{t+1}+(C^1_t+C^0_t)a^tb+(C^2_t+C^1_t)a^{t-1}b^2+....+(C^t_t+C^{t-1}_t)ab^t+C^t_tb^{t+1}\)
\(=C^0_{t+1}a^{t+1}+C^1_{t+1}a^tb+C^2_{t+1}a^{t-1}b^2+....+C^t_{t+1}ab^t+C^{t+1}_{t+1}b^{t+1}\) (sử dụng đẳng thức \(C^k_n+C^{k+1}_n=C^{k+1}_{n+1}\) và \(C^0_t=C^0_{t+1}=1; C^t_t=C^{t+1}_{t+1}=1\))
\(=\sum ^{t+1}_{k=0}C^{k}_{t+1}a^{t+1-k}b^k\)
Phép chứng minh hoàn tất. Ta có đpcm.
1) \(x^2-2mx+m-2=0\) (1)
pt (1) có \(\Delta'=\left(-m\right)^2-\left(m-2\right)=m^2-m+2=\left(m-\frac{1}{2}\right)^2+\frac{7}{4}>0\left(\forall m\right)\)
=> pt luôn có 2 nghiệm phân biệt x1, x2
Vi-et: \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m-2\end{cases}}\)\(\Rightarrow\)\(M=\frac{2x_1x_2-\left(x_1+x_2\right)}{x_1^2+x_2^2-6x_1x_2}=\frac{2x_1x_2-\left(x_1+x_2\right)}{\left(x_1+x_2\right)^2-8x_1x_2}=\frac{2m-4-2m}{\left(2m\right)^2-8m-16}\)
\(=\frac{-4}{4m^2-8m-16}=\frac{-4}{4\left(m-1\right)^2-20}\ge\frac{-4}{-20}=\frac{1}{5}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(m=1\)
xin 1slot sáng giải
Để A nằm giữa B và C thì hai vecto A B → ; A C → ngược hướng nên k <0
Đáp án B