Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\)\(x^4\)\(+4x^3\)\(+2x^2\)\(+x\)\(-7\)
\(B=\)\(2x^4\)\(-4x^3\)\(-2x^2\)\(-5x\)\(+3\)
b) f(x)= A(x)+B(x)= \(3x^4-4x\)\(-4\)
g(x)=A(x)-B(x) = \(-x^4+8x^3+4x^2+6x\)\(-10\)
c) g(x)= \(0^4+8.0^3+4.0^2\)\(+6.0\)\(-10\)
= -10
g(-2)=\(-2^4+8.-2^3+4.-2^2+6.-2\)\(-10\)
=\(-54\)
Bài 1:
a) \(f\left(x\right)=2x\left(x^2-3\right)-4\left(1-2x\right)+x^2\left(x-1\right)+\left(5x+3\right)\)
\(=2x^3-6x-4+8x+x^3-x^2+5x+3\)
\(=x^3-x^2+7x-1\)
\(g\left(x\right)=-3\left(1-x^2\right)-2\left(x^2-2x+1\right)\)
\(=-3+3x^2-2x^2+4x-2\)
\(=x^2+4x-5\)
b) \(h\left(x\right)=f\left(x\right)-g\left(x\right)\)
\(=x^3-x^2+7x-1-x^2-4x+5\)
\(=x^3-2x^2+3x-4\)
a) A(x)= \(-2x^4+x^2-x-7-2\)
B(x)=\(2x^4+6x^3-2x^3-x^2-8x-5\)
b) Thay số:A(x)
\(1^2-1-2-2\cdot1^4+7=3\)
B(x)
\(6\cdot2^3+2\cdot2^4-8\cdot2-5-2\cdot2^3-2^2=39\)
c)\(6x^3-2x^3-7x-12-2\)
a)\(A\left(x\right)=x^4+4x^3+2x^2+x-7\)
\(B\left(x\right)=2x^4-4x^3-2x^2-5x+3\)
b) \(f\left(x\right)=A\left(x\right)+B\left(x\right)=x^4+4x^3+2x^2+x-7+2x^4-4x^3-2x^2-5x+3=3x^4-4x-4\)
\(g\left(x\right)=A\left(x\right)-B\left(x\right)=x^4+4x^3+2x^2+x-7-2x^4+4x^3+2x^2+5x-3=-x^4+8x^3+4x^2+6x-10\)c)\(g\left(0\right)=-0^4+8.0^3+4.0^2+6.0-10=-10\)
\(g\left(-2\right)=\left(-2\right)^4+8.\left(-2\right)^3+4.\left(-2\right)^2+6.\left(-2\right)-10=16-64+16-12-10=-54\)
a) A(x) = \(x^2-5x^3+3x+\)\(2x^3\)= \(x^2+\left(-5x^3+2x^3\right)+3x\)=\(x^2-3x^3+3x\)
=\(-3x^3+x^2+3x\)
B(x)= \(-x^2+7+3x^3-x-5\)= \(-x^2+2+3x^3-x\)
=\(3x^3-x^2-x+2\)
b) A(x) - B(x) = \(-3x^3+x^2+3x\)- \(3x^3+x^2+x-2\)
=\(\left(-3x^3-3x^3\right)+\left(x^2+x^2\right)+\left(3x+x\right)-2\)= \(-6x^3+2x^2+4x-2\)
vậy A(x) - B(x) =\(-6x^3+2x^2+4x-2\)
c) C(x) = A(x) + B(x) =\(-3x^3+x^2+3x\)+ \(3x^3-x^2-x+2\)= 2x+2
ta có: C(x) = 0 <=> 2x+2=0
=> 2x=-2
=> x=-1
vậy x=-1 là nghiệm của đa thức C(x)
a) A(x)= -3x^3 + x^2 + 3x
B(x)= 3x^3 - x^2 - x +2
b) A(x) - B(x) = - 3x^3 + x^2 + 3x - (3x^3 - x^2 - x + 2)
= -3x^3 + x^2 + 3x - 3x^3 + x^2 + x - 2
= -6x^3 + 2x^2 + 4x -2
c) C(x) = A(x) + B(x) = - 3x^3 + x^2 + 3x + 3x^3 - x^2 - x +2= 2x + 2
C(x) có nghiệm => C(x)=0 => 2x + 2 = 0 => 2x=-2 => x=-1
Vậy x=-1 là nghiệm của C(x)
a: \(P\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}\)
\(Q\left(x\right)=4x^4+2x^3-5x^2-6x+\dfrac{3}{2}\)
b: \(A\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}+4x^4+2x^3-5x^2-6x+\dfrac{3}{2}=-x^4+2x^3-3x^2-14x+2\)
\(B\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}-4x^4-2x^3+5x^2+6x-\dfrac{3}{2}=-9x^4-2x^3+7x^2-2x-1\)
f(x)=x5+3x2−5x3−x7+x3+2x2+x5−4x2−x7⇒f(x)=2x5−4x3+x2
Đa thức có bậc là 5
g(x)=x4+4x3−5x8−x7+x3+x2−2x7+x4−4x2−x8⇒g(x)=−6x8−3x7+2x4+5x3−3x2g(x)=x4+4x3−5x8−x7+x3+x2−2x7+x4−4x2−x8⇒g(x)=−6x8−3x7+2x4+5x3−3x2
Đa thức có bậc là 8.
Thu gọn và sắp xếp các đa thức f (x) và g (x) theo lũy thừa giảm của biến rồi tìm bậc của đa thức đó.