Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)
\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)
Các ý dưới bạn làm tương tự nhé.
*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)
\(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)
\(=6\times\left(2^2+2^3+...+2^{2008}\right)\)
\(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)
\(\Rightarrow A⋮3\)
*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(\Rightarrow A⋮7\)
Mình sửa lại đề C 1 chút xíu
*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)
\(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(\Rightarrow C⋮4\)
Các câu khác làm tương tự nhé. Chúc bạn học tốt!
a: \(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{2009}\right)⋮3\)
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{2008}\right)⋮7\)
b: \(B=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)
\(=4\left(3+3^3+...+3^{2009}\right)⋮4\)
d: \(D=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{2009}\left(1+7\right)\)
\(=8\left(7+7^3+...+7^{2009}\right)⋮8\)
A=2^1+2^2+2^3+2^4+...+2^2010
=(2+2^2)+(2^3+2^4)+...+(2^2010+2^2011)
=2.(1+2)+2^3.(1+2)+...+2^2010.(1+2)
=2.3+2^3.3+...+2^2010.3
=(2+2^3+2^2010).3
=> A chia het cho 3
a)7S=72+73+74+...+72016+72017
7S-S=72017-7
S=(72017-7):6
Các bài trên gần giống nhau nên mình làm một bài thôi nhé!
a) \(B=1+7^1+7^2+...+7^{119}\)
\(2B=7^1+7^2+7^3+...+7^{120}\)
\(\Rightarrow2B-B=B=7^{120}-1\)
Ta có:\(B=\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{118}+7^{119}\right)\)
\(=\left(1+7\right)+7^2\left(1+7\right)+...+7^{118}\left(1+7\right)\)
\(=8\left(1+7^2+...+7^{118}\right)⋮8^{\left(đpcm\right)}\)
\(B=1+7^1+7^2+7^3+.......+7^{119}\)
\(\Rightarrow7B=7+7^2+7^3+7^4+.....+7^{120}\)
\(\Rightarrow7B-B=\left(7+7^2+7^3+7^4+......+7^{120}\right)-\left(1+7^1+7^2+7^3+.......+7^{119}\right)\)
\(\Rightarrow6B=7^{120}-1\)
\(\Rightarrow B=\frac{7^{120}-1}{6}\)
B chia hết cho 8:
\(B=\left(1+7^1\right)+\left(7^2+7^3\right)+........+\left(7^{118}+7^{119}\right)\)
\(\Rightarrow B=\left(1+7^1\right)+7^2\left(1+7^1\right)+.......+7^{118}\left(1+7^1\right)\)
\(\Rightarrow B=8+7^2.8+........+7^{118}.8\)
\(\Rightarrow B=8\left(1+7^2+.......+7^{118}\right)⋮8\left(đpcm\right)\)
Các phần sau bạn làm tương tự
Chú ý: Khi muốn chứng minh chia hết bạn phải nhóm các số hạng sao cho mỗi cặp chia hết với số cho trước