K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2017

vi 1/62>1/80 ;1/62>1/80:...:1/80=0/80

suy ra 1/61+1/62+1/63+...+1/80>1/80+1/80+1/80+...+1/80

moi ve co 20 so hang

24 tháng 4 2015

Vì \(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}<\frac{1}{12}+\frac{1}{12}+\frac{1}{12}=\frac{3}{12}=\frac{1}{4}\)

\(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{66}<\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=\frac{6}{60}=\frac{1}{10}\)

=> A < \(\frac{1}{3}+\frac{1}{4}+\frac{1}{10}=\frac{41}{60}<\frac{45}{60}=\frac{3}{4}\)điều phải c/m

20 tháng 4 2018

Ta có :

\(S=\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+.......+\frac{1}{62}+\frac{1}{63}+\frac{1}{64}\)

\(\Rightarrow S< \frac{1}{17}+\frac{1}{17}+......+\frac{1}{17}+\frac{1}{17}+\frac{1}{17}\)

\(\Rightarrow S< \frac{1}{17}.48\)

\(\Rightarrow S< \frac{48}{17}\)

\(\Rightarrow S< 2\)( 1 ) 

Lại có :

\(S>\frac{1}{64}+\frac{1}{64}+.........+\frac{1}{64}+\frac{1}{64}+\frac{1}{64}\)

\(\Rightarrow S>\frac{1}{64}.48\)

\(\Rightarrow S>\frac{3}{4}\)( 2 ) 

Từ ( 1 ) và ( 2 ) suy ra : \(\frac{3}{4}< S< 2\)

Vậy \(1< S< 2\left(ĐPCM\right)\)

\(\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}<\frac{1}{5}+\frac{1}{13}.3+\frac{1}{61}.3\)

\(=\frac{1}{5}+\frac{3}{13}+\frac{3}{61}<\frac{1}{5}+\frac{3}{12}+\frac{3}{60}=\frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{1}{2}\)

\(\Rightarrowđpcm\)

31 tháng 5 2015

Ta có:

S=1/5+(1/13+1/14+1/15)+(1/61+1/62+1/63)<1/5+1/12.3+1/60.3

=>S<1/5+1/4+1/20=10/20

Hay S<1/2

23 tháng 6 2018

a) Ta có:

S = 1/5 + 1/13 + 1/14 + 1/15 + 1/61 + 1/62 + 1/63

Ta thấy:

1/13 < 1/12 ; 1/14 < 1/12 ; 1/15 < 1/12

=> 1/13 + 1/14 + 1/15 < 1/12 + 1/12 + 1/12 = 1/12 . 3 = 1/4  (1)

1/61 < 1/60 ; 1/62 < 1/60 ; 1/63 < 1/60

=> 1/61 + 1/62 + 1/63 < 1/60 + 1/60 + 1/60 = 1/60. 3 = 1/20  (2)

 Từ (1) và (2)

=> 1/13 + 1/14 + 1/15 + 1/61 + 1/62 + 1/63 < 1/4 + 1/20

=>S =  1/5 + 1/13 + 1/14 + 1/15 + 1/61 + 1/62 + 1/63 < 1/4 + 1/20 + 1/5 = 5/20 + 1/20 + 4/20 = 10/20 = 1/2 (ĐPCM)

b) Ta có:

\(P=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{20}}\)

\(2P=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{19}}\)

\(2P-P=1+\frac{1}{2}-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^2}+...+\frac{1}{2^{19}}-\frac{1}{2^{19}}-\frac{1}{2^{20}}\)

\(P=1-\frac{1}{2^{20}}< 1\)

=> P < 1

6 tháng 5 2015

TA có:

1/12>1/13

1/12>1/14

1/12>1/15

=>1/12.3=1/4>1/13+1/14+1/15

1/60>1/61

1/60>1/62

1/60>1/63

=>1/60.3=1/20>1/61+1/62+1/63

=>1/5+1/4+1/20> 1/5+1/13+1/14+1/15+1/61+1/62+1/63

=>1/2> 1/5+1/13+1/14+1/15+1/61+1/62+1/63