Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Gọi d là ước chung của 4n+ 3 và 3n + 2
Ta có : \(\hept{\begin{cases}4n+3⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3.\left(4n+3\right)⋮d\\4.\left(3n+2\right)⋮d\end{cases}}}\)=> 3.( 4n + 3 ) - 4 . ( 3n+2 ) \(⋮d\)
12n + 9 - 12n+ 8 \(⋮\)d
1 \(⋮\)d => d \(\inƯ\left(1\right)=\left\{1\right\}\)=> d = 1
Vì d=1 => ( 4n+3 ,3n+2) = 1 => đpcm
a) \(M=1+5+5^2+....+5^{315}+5^{316}\)
\(\Leftrightarrow M=\left(1+5\right)+\left(5^2+5^3\right)+.....+\left(5^{315}+3^{316}\right)\)
\(\Leftrightarrow M=6+5^2\cdot6+....+5^{315}\cdot6\)
\(\Leftrightarrow M=6\left(1+5^2+....+5^{315}\right)\)
=> M là bội của 6
b) Gọi d là ƯCLN (4n+3; 3n+2) (d thuộc N*)
\(\Rightarrow\hept{\begin{cases}4n+3⋮d\\3n+2⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}3\left(4n+3\right)⋮d\\4\left(3n+2\right)⋮d\end{cases}\Leftrightarrow}\hept{\begin{cases}12n+9⋮d\\12n+8⋮d\end{cases}}}\)
=> 12n+9-12n-8 chia hết cho d
=> 1 chia hết cho d. Mà d thuộc N*
=> d=1
Vậy với n là số tự nhiên thì 4n+3 và 3n+2 nguyên tố cùng nhau
a)
Ta có :
\(81^7-27^9-9^{13}\)
= \(3^{28}-3^{27}-3^{26}\)
= \(3^{23}\left(3^5-3^4-3^3\right)\)
= \(3^{23}\cdot135=3^{23}\cdot3\cdot45\) chia hết cho 45
b)
\(5+5^2+5^3+.....+5^{120}\)
số số hạng là : (120 - 1) : 1 + 1 = 120 (số)
=>\(5+5^2+5^3+.....+5^{120}=\left(5+5^2\right)+\left(5^3+5^4\right)+......+\left(5^{119}+5^{120}\right)\)= \(5\left(1+5\right)+5^3\left(1+5\right)+....+5^{119}\left(1+5\right)\)
= \(5\cdot6+5^3\cdot6+......+5^{119}\cdot6\)
= \(6\left(5+5^3+.....+5^{119}\right)\) chia hết cho 6
\(5+5^2+5^3+.....+5^{120}\)
= \(5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+......+5^{118}\left(1+5+5^2\right)\)
= \(5\cdot31+5^4\cdot31+......+5^{118}\cdot31\)
= \(31\left(5+5^4+.......+5^{118}\right)\) chia hết cho 31
1.
a) Ta có: \(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)
\(=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}.5\)* Lại có : \(5⋮5\Rightarrow5.3^{26}⋮5\)
Và \(3^{26}⋮3^2=9\Rightarrow3^{26}.5⋮9\)
Mặt khác, do \(\left(5,9\right)=1\Rightarrow3^{26}.5⋮5.9=45\)
Vậy \(87^7-27^9-9^{13}⋮45\left(đpcm\right)\)
b) Đặt \(A=5+5^2+...+5^{120}\)
\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{119}+5^{120}\right)\)
\(A=\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^{118}\left(5+5^2\right)\)
\(A=\left(5+5^2\right)\left(1+5^2+...+5^{118}\right)\)
\(A=30.\left(1+5^2+...+5^{118}\right)\)
Do \(30⋮6\Rightarrow30\left(1+5^2+...5^{118}\right)⋮6\left(1\right)\)
Tương tự, \(A=\left(5+5^2+5^3\right)+...+\left(5^{118}+5^{119}+5^{120}\right)\)
\(A=\left(5+5^2+5^3\right)+...+5^{117}\left(5+5^2+5^3\right)\)
\(A=\left(5+5^2+5^3\right)\left(1+...+5^{117}\right)\)
\(A=155\left(1+...+5^{117}\right)\)
Do \(155⋮31\Rightarrow155\left(1+...+5^{117}\right)⋮31\left(2\right)\)
Từ (1) và (2) => Đpcm.
tik mik nha !!!
1)
a) 1+5+5^2+5^3+....+5^101
=(1+5)+(5^2+5^3)+....+(5^100+5^101)
=6+5^2.(1+5)+...+5^100(1+5)
=6+5^2.6+...+5^100.6 chia hết cho 6 , vì mỗi số hạng đều chia hết cho 6
b) 2+2^2+2^3+...+2^2016
=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+1^10)+....+(2^2012+2^2013+2^2014+2^2015+2^2016)
=2.31+2^6.31+...+2^2012.31 chia hết cho 31
Tương tự như câu a lên mk rút gọn
2) còn bài a kì quá abc deg là sao nhỉ
b) abc chia hết cho 8 nên a ; b hoặc c chia hết cho 8
bạn nghĩ thử đi bài 2b dễ lắm nếu ko bt thì hỏi lại
\(a.\)\(5^{2003}+5^{2002}+5^{2001}\)
\(=5^{2001}.\left(1+5+5^2\right)\)
\(=5^{2001}.31\)
\(\Rightarrow5^{2003}+5^{2002}+5^{2001}⋮31\)
\(b.\)
\(1+7+7^2+7^3+......+7^{101}\)
\(=8+7^2.\left(1+7\right)+7^4.\left(1+7\right)+....+7^{100}.\left(1+7\right)\)
\(=8+7^2.8+7^4.8+.....+7^{100}.8\)
\(=8+8.\left(7^2+7^4+...+7^{100}\right)\)
Ta thấy cả hai số hạng đều chia hết cho 8
\(\Rightarrow1+7+7^2+7^3+......+7^{101}⋮8\)
1 +5+ 52 +53 + ...+ 5100 + 5101
= (1 + 5) + (52 + 53) + ... + (5100 + 5101)
= 6 + 52(1 + 5) + ... + 5100.(1 + 5)
= 6 + 52.6 + ... + 5100.6
= 6.(1 + 52 + ... + 5100) \(⋮\)6
\(1+5+5^2+.....+5^{101}⋮6\)
\(=\left(1+5\right)+\left(5^2+5^3\right)+.....+\left(5^{100}+5^{101}\right)\)
\(=6+\left(5^2.1+5^2.5\right)+.....+\left(5^{100}.1+5^{100}.5\right)\)
\(=6+5^2.\left(1+5\right)+.....+5^{100}.\left(1+5\right)\)
\(=6+5^2.6+....+5^{100}.6\)
\(=\left(1+5^2+....+5^{100}\right).6⋮6\)