K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2020

a) \(\left(\frac{3}{x+3}+\frac{1}{x-3}-\frac{18}{9-x^2}\right)\left(x-2\right)\)

= \(\left[\frac{3\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{1\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{18}{x^2-9}\right]\left(x-2\right)\)

= \(\left[\frac{3x-9}{\left(x-3\right)\left(x+3\right)}+\frac{x+3}{\left(x-3\right)\left(x+3\right)}+\frac{18}{\left(x-3\right)\left(x+3\right)}\right]\left(x-2\right)\)

=\(\frac{3x-9+x+3+18}{\left(x-3\right)\left(x+3\right)}.\left(x-2\right)\)

=\(\frac{4x+12}{\left(x-3\right)\left(x+3\right)}.\left(x-2\right)\)

=\(\frac{4\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\left(x-2\right)\)

=\(\frac{4}{x-3}.\frac{x-2}{1}\)

=\(\frac{4\left(x-2\right)}{x-3}\)

Vậy ...

b) Ta có : \(\frac{4\left(x-2\right)}{x-3}=4+\frac{4}{x-3}\) [ ĐKXĐ : x\(\ne\pm3\) ]

Để A \(\in Z\) <=> \(\frac{4}{x-3}\) \(\in Z\)

<=> x - 3 \(\inƯ_4=\left\{\pm1,\pm2,\pm4\right\}\)

Ta có bảng sau :

x - 3 -1 1 -2 2 -4 4
x 2 4 1 5 -1 7
Nhận xét : tm tm tm tm tm tm

Vậy ...

c) Để B<0, B>0 thì

x - 3 \(\ne0\)

\(x+3\ne0\)

\(\Leftrightarrow x\ne\pm3\)

Vậy ...

23 tháng 7 2017

ĐK : \(x\ne2\)\(x\ne-2\)

a) \(A=\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}=\frac{x^3}{\left(x-2\right)\left(x+2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)

\(=\frac{x^3-x.\left(x+2\right)-2.\left(x-2\right)}{\left(x+2\right).\left(x-2\right)}=\frac{x^3-x^2-2x-2x+4}{\left(x+2\right).\left(x-2\right)}=\frac{x^3-x^2-4x+4}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{x^2.\left(x-1\right)-4.\left(x-1\right)}{\left(x+2\right)\left(x-2\right)}=\frac{\left(x-1\right).\left(x^2-4\right)}{\left(x+2\right)\left(x-2\right)}=\frac{\left(x-1\right)\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=x-1\)

b)  -  Để A > 0 thì   x - 1 > 0  =>  x > 1

     -  Để A < 0 thì   x - 1 < 0  =>  x < 1

c) Để  | A | = 5 thì   | x-1 | = 5

+ Nếu \(x-1\ge0\) thì \(x\ge1\) , ta có phương trình

x - 1 = 5 => x = 6 ( thỏa mãn ) 

+ Nếu x - 1 < 0 thì x < 1 , ta có phương trình : 

-x + 1 = 5  < = >  -x = 4  <=>  x = -4  ( thỏa mãn )

Vậy tập nghiệm của phương trình là S = { -4 ; 6 }

29 tháng 6 2016

M = \(\left(\frac{9}{x\left(x^2-9\right)}+\frac{1}{x+3}\right):\left(\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right)\)

<=> M = 

25 tháng 2 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)

\(A=\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+4}{3-x}\)

\(\Leftrightarrow A=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x+3}{x-2}+\frac{2\left(x+2\right)}{x-3}\)

\(\Leftrightarrow A=\frac{2x-9-\left(x-3\right)\left(x+3\right)+2\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow A=\frac{2x-9-x^2+9+2x^2-8}{\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow A=\frac{x^2+2x-8}{\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow A=\frac{\left(x+4\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow A=\frac{x+4}{x-3}\)

b) Để \(A\inℤ\)

\(\Leftrightarrow\frac{x+4}{x-3}\inℤ\)

\(\Leftrightarrow1+\frac{7}{x-3}\inℤ\)

\(\Leftrightarrow x-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

\(\Leftrightarrow x\in\left\{2;4;-4;10\right\}\)

Vậy để \(A\inℤ\Leftrightarrow x\in\left\{2;4;-4;10\right\}\)

c) Để \(A=\frac{3}{5}\)

\(\Leftrightarrow\frac{x+4}{x-3}=\frac{3}{5}\)

\(\Leftrightarrow5x+20=3x-9\)

\(\Leftrightarrow2x+29=0\)

\(\Leftrightarrow x=-\frac{29}{2}\)

d) Để \(A< 0\)

\(\Leftrightarrow\frac{x+4}{x-3}< 0\)

\(\Leftrightarrow1+\frac{7}{x-3}< 0\)

\(\Leftrightarrow\frac{-7}{x-3}< 1\)

\(\Leftrightarrow-7< x-3\)

\(\Leftrightarrow x>-4\)

e) Để \(A>0\)

\(\Leftrightarrow\frac{x+4}{x-3}>0\)

\(\Leftrightarrow1+\frac{7}{x-3}>0\)

\(\Leftrightarrow\frac{-7}{x-3}>1\)

\(\Leftrightarrow-7>x-3\)

\(\Leftrightarrow x< -4\)

26 tháng 6 2018

ĐKXĐ: \(x\ne0;x\ne\pm2\)

a, \(A=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)

\(=\left[\frac{3x^2}{3x\left(x-2\right)\left(x+2\right)}-\frac{6x\left(x+2\right)}{3x\left(x-2\right)\left(x+2\right)}+\frac{3x\left(x-2\right)}{3x\left(x-2\right)\left(x+2\right)}\right]:\left[\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{10-x^2}{x+2}\right]\)

\(=\frac{3x^2-6x^2-12x+3x^2-6x}{3x\left(x-2\right)\left(x+2\right)}:\frac{x^2-4+10-x^2}{x+2}\)

\(=\frac{-18x}{3x\left(x-2\right)\left(x+2\right)}\cdot\frac{x+2}{6}\)

\(=\frac{-3x}{3x\left(x-2\right)}=\frac{-1}{x-2}\)

b, Ta có: \(\left|x\right|=\frac{1}{2}\Rightarrow x=\pm\frac{1}{2}\)

Với \(x=\frac{1}{2}\) thì \(A=\frac{-1}{\frac{1}{2}-2}=\frac{-1}{\frac{-3}{2}}=\frac{2}{3}\)

Với \(x=\frac{-1}{2}\)thì \(A=\frac{-1}{\frac{-1}{2}-2}=\frac{-1}{\frac{-5}{2}}=\frac{2}{5}\)

c, Để A=2 <=> \(\frac{-1}{x-2}=2\Leftrightarrow-1=2x-4\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)

Vậy x=3/2 thì A=2

d, Để A<0 <=> \(\frac{-1}{x-2}< 0\Leftrightarrow x-2>0\Leftrightarrow x>2\)

Vậy với x>2 thì A<0

e, Để A thuộc Z <=> x-2 thuộc Ư(-1)={1;-1}

Ta có: x-2=1 => x=3 (t/m)

          x-2=-1 => x=1 (t/m)

Vậy x thuộc {3;1} thì A thuộc Z

26 tháng 6 2018

a)  \(A=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)(ĐKXĐ: x khác 0; + 2)

\(A=\left(\frac{x^2}{x\left(x^2-4\right)}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{10-x^2}{x+2}\right)\)

\(A=\left(\frac{x^2}{x\left(x-2\right)\left(x+2\right)}-\frac{2x\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}+\frac{x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}\right):\frac{6}{x+2}\)

\(A=\frac{-6x}{x\left(x-2\right)\left(x+2\right)}.\frac{x+2}{6}=\frac{-x}{x\left(x-2\right)}=\frac{1}{2-x}.\)

Vậy \(A=\frac{1}{2-x}.\)

b) \(\left|x\right|=\frac{1}{2}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\). Nếu \(x=\frac{1}{2}\)thì \(A=\frac{1}{2-\frac{1}{2}}=\frac{2}{3}.\)

Nếu \(x=-\frac{1}{2}\)thì \(A=\frac{1}{2+\frac{1}{2}}=\frac{2}{5}.\)Vậy ...

c) Để A=2 thì \(\frac{1}{2-x}=2\Rightarrow4-2x=1\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}.\)Vậy ...

d) Để A<0 thì \(\frac{1}{2-x}< 0\Rightarrow2-x< 0\Leftrightarrow x>2.\)Vậy ...

e) Để A thuộc Z thì \(\frac{1}{2-x}\in Z\Rightarrow1⋮2-x\). Mà 2-x thuộc Z (Do x thuộc Z)

Nên \(2-x\in\left\{1;-1\right\}\Rightarrow x\in\left\{1;3\right\}.\)(t/m ĐKXĐ)

Vậy x=1 hay x=3 thì A nguyên.

14 tháng 12 2015

a) Điều kiện xác định của phân thức A là x#+-5
\(A=\frac{2\left(x+15\right)}{x^2-25}-\frac{x+3}{x+5}+\frac{x}{x-5} \)
\(A=\frac{2\left(x+15\right)}{\left(x+5\right)\left(x-5\right)}-\frac{x+3}{x+5}+\frac{x}{x-5}\)
\(A=\frac{2\left(x+15\right)}{\left(x+5\right)\left(x-5\right)}-\frac{\left(x+3\right)\left(x-5\right)}{\left(x+5\right)\left(x-5\right)}+\frac{x\left(x+5\right)}{\left(x+5\right)\left(x-5\right)}\)
\(A=\frac{2x+30-\left(x^2-5x+3x-15\right)+x^2+5x}{\left(x+5\right)\left(x-5\right)}\)
\(A=\frac{2x+30-x^2+5x+3x-15+x^2+5x}{\left(x+5\right)\left(x-5\right)}=\frac{15x+15}{\left(x+5\right)\left(x-5\right)}=\frac{15\left(x+1\right)}{\left(x+5\right)\left(x-5\right)}\)

tick đúng nha, ý b tí mình giải nhé