Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta thấy để A là số dương thì tử và mẫu phải cùng dấu. Mà -3 là số âm nên tử số a - 1 phải là số âm.
=> a - 1 < 0
=> a < - 1
Vậy để A là số dương thì A < -1
b) Để A là số âm thì tử và mẫu phải trái dấu. Mà -3 là số âm nên a - 1 phải là số dương.
=> a - 1 > 0
=> a > 1
Vậy để A là số dương thì a > 1.
c) Để A không là số âm, không là số dương thì A = 0
=> \(\frac{a-1}{-3}=0\)
\(=>a-1=0:\left(-3\right)=0\)
=> a = 0 + 1 = 1
Vậy để A không là số âm, không là số dương thì A = 1
\(\frac{5^3.2.3^2.5.2^6}{5^{10}.3^2.2^{13}}=\frac{5^4.2^7.3^2}{5^{10}.3^2.2^{13}}=\frac{1}{5^6.2^6}=\frac{1}{10^6}\)
\(\frac{18\left(27-23\right)}{4\left(34-52\right)}=\frac{18.4}{4.\left(-18\right)}=-1\)
Gọi d=ƯCLN(6n+12;3n+5).
Ta có:6n+12 chia hết cho d. suy ra: 3n+6 chia hết cho d.
3n+5 chia hết cho d.
suy ra: (3n+6)-(3n+5) chia hết cho d.
suy ra: 1 chia hết cho d.
suy ra: d=1.
Vậy \(\frac{6n+12}{3n+5}\) là PS tối giản.
\(H=\left(9\frac{3}{8}+7\frac{3}{8}\right)+4,03=16\frac{3}{8}+4,03=16,375+4,03=20,405\)
\(I=10101.\left(\frac{5}{111111}+\frac{2,5}{111111}-\frac{4}{111111}\right)=10101.\frac{3,5}{111111}=\frac{7}{22}\)
Ta có: \(\frac{a}{b}< \frac{a+1}{b+1}\)
\(B=\frac{10^{2013}+1}{10^{2014}+1}< \frac{10^{2013}+1+9}{10^{2014}+1+9}=\frac{10^{2013}+10}{10^{2014}+10}=\frac{10\left(10^{2012}+1\right)}{10\left(10^{2013}+1\right)}=\frac{10^{2012}+1}{2^{2013}+1}=A\)
Vậy: \(A>B\)
Ta có:
\(10A=\frac{10\left(10^{2012}+1\right)}{10^{2013}+1}=\frac{10^{2013}+10}{10^{2013}+1}=\frac{10^{2013}+1+9}{10^{2013}+1}=\frac{10^{2013}+1}{10^{2013}+1}+\frac{9}{10^{2013}+1}=1+\frac{9}{10^{2013}+1}\)
\(10B=\frac{10\left(10^{2013}+1\right)}{10^{2014}+1}=\frac{10^{2014}+10}{10^{2014}+1}=\frac{10^{2014}+1+9}{10^{2014}+1}=\frac{10^{2014}+1}{10^{2014}+1}+\frac{9}{10^{2014}+1}=1+\frac{9}{10^{2014}+1}\)
Vì 102013+1<102014+1
\(\Rightarrow\frac{9}{10^{2013}+1}>\frac{9}{10^{2014}+1}\)
\(\Rightarrow1+\frac{9}{10^{2013}+1}>1+\frac{9}{10^{2014}+1}\)
\(\Rightarrow10A>10B\)
\(\Rightarrow A>B\)
minh lam bai nay roi nhung minh ko co nha nen minh ko nho
\(\left|x-\frac{1}{3}\right|+\left|x-y\right|=0\)
\(\Leftrightarrow\begin{cases}x-\frac{1}{3}=0\\x-y=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=\frac{1}{3}\\x=y\end{cases}\)\(\Leftrightarrow x=y=\frac{1}{3}\)
\(\frac{2x+1}{3}=\frac{5}{2}\)
\(2x+1=\frac{5.3}{2}=\frac{15}{2}\)
2x= 15/2 - 1 = 13/2
x = 13/2 : 2
x = 13/4
b) 2x + 2x+1 + 2x+2 + 2x+3 = 480
2x.(1+ 2 +22 + 23) = 480
2x . 15 = 480
2x = 480 : 15 = 32
2x = 25 => x = 5
c) \(\left(\frac{3x}{7}+1\right):\left(-4\right)=-\frac{1}{28}\)
\(\frac{3x}{7}+1=\frac{-1}{28}.\left(-4\right)=\frac{1}{7}\)
\(\frac{3x}{7}=\frac{1}{7}-1=-\frac{6}{7}\)
< = > 3x= -6 => x = -2
Vì : \(\overline{3a56b}⋮2,5\Rightarrow b=0\)
Ta có : \(\overline{3a560}⋮3\)
\(\Rightarrow\left(3+a+5+6+0\right)⋮3\)
\(\Rightarrow\left(14+a\right)⋮3\)
\(\Rightarrow12+\left(a+2\right)⋮3\) . Mà : \(12⋮3\Rightarrow\left(a+2\right)⋮3\)
Vì : a là chữ số ; \(a+2\ge2\Rightarrow a+2\in\left\{3;6;9\right\}\)
+) \(a+2=3\Rightarrow a=3-2\Rightarrow a=1\)
+) \(a+2=6\Rightarrow a=6-2\Rightarrow a=4\)
+) \(a+2=9\Rightarrow a=9-2\Rightarrow a=7\)
Vậy : a = 1 thì b = 0
a = 4 thì b = 0
a = 7 thì b = 0
\(B=\frac{1}{4}+\left(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{9}\right)+\left(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{19}\right)\)
Xét \(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{9}>\frac{1}{9}+\frac{1}{9}+...+\frac{1}{9}=\frac{1}{9}.5=\frac{5}{9}>\frac{1}{2}\)
và \(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{19}>\frac{1}{19}+\frac{1}{19}+...+\frac{1}{19}=\frac{1}{19}.10=\frac{10}{19}>\frac{1}{2}\)
Do đó \(B>\frac{1}{4}+\frac{1}{2}+\frac{1}{2}=\frac{5}{4}>1\)