Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\cdot...\left(\frac{1}{10}-1\right)\)
\(A=\left(\frac{1}{2}-\frac{2}{2}\right)\left(\frac{1}{3}-\frac{3}{3}\right)\cdot...\cdot\left(\frac{1}{10}-\frac{10}{10}\right)\)
\(A=\left(-\frac{1}{2}\right)\cdot\left(-\frac{2}{3}\right)\cdot...\cdot\left(-\frac{9}{10}\right)\)
\(A=\frac{-1}{2}\cdot\frac{-2}{3}\cdot...\cdot\frac{-9}{10}\)
\(A=\frac{\left(-1\right)\cdot\left(-2\right)\cdot...\cdot\left(-9\right)}{2\cdot3\cdot...\cdot10}\)
\(A=\frac{\left(-1\right)\cdot2\cdot...\cdot9}{2\cdot3\cdot...\cdot10}=\frac{-1}{10}\)
Mà \(\frac{-1}{10}>\frac{-1}{9}\)nên A > -1/9
Phần cuối tương tự
Ta có : \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{19}\right)\left(1-\frac{1}{20}\right)\)
\(=\frac{1}{2}.\frac{2}{3}....\frac{18}{19}.\frac{19}{20}\)
\(=\frac{1.2....18.19}{2.3...19.20}\)
\(=\frac{1}{20}>\frac{1}{21}\)
Vậy A > 1/21
\(B=\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right).\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{81}\right).\left(1-\frac{1}{100}\right)\)
\(B=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{80}{81}.\frac{99}{100}\)
\(B=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{8.10}{9.9}.\frac{9.11}{10.10}\)
\(B=\frac{1.2.3...8.9}{2.3.4...9.10}.\frac{3.4.5...10.11}{2.3.4...9.10}\)
\(B=\frac{1}{10}.\frac{11}{2}\)
\(B=\frac{11}{20}>\frac{11}{21}\)
Ta có :
\(M=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.....\frac{99}{100}=\frac{3.8.15.....99}{4.9.16.....100}=\frac{1.3.2.4.3.5.....9.11}{2.2.3.3.4.4.....10.10}\)\(=\frac{1.2.3...9}{2.3...10}.\frac{3.4...11}{2.3...10}=\frac{1}{10}.\frac{11}{2}=\frac{11}{20}< \frac{11}{19}\)
ta có M = (1- 1/4) (1- 1/9)... ( 1- 1/100)
= 3/2^2.8/3^2 ... 99/10^2
= 1.3/2^2 . 2.4/3^2 ... 9.11/10^ 2
= 1.2.3...9/ 2.3.4...10 . 3.4.5... 11/ 2.3.4... 10
= 1/10 . 11/2 = 11/20 < 11/19
Vậy M < 11/19
Cho \(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
so sánh B với \(\frac{3}{4}\)
Ta có:\(\frac{1}{2^2}=\frac{1}{4}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
....
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Leftrightarrow B< \frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{100}\)
B < \(\frac{1}{4}\) < \(\frac{3}{4}\)
\(\Leftrightarrow B< \frac{3}{4}\)
vì 1/27^11 = 1/(3^3)^11 = 1/3^33
1/81^8= 1/(9^2)^8 = 1/9^16 = 1/(3^2)^16 = 1/3^32
=> <
vì 1/3^99= 1/(3)^33.3=1/99^3 = 1/ (33.3)^3 = 1/33^9
1/11^21=1/(11)^3.7=1/33^7
=> " > "
nhớ ****
chán quá các bạn k mik nha