\(ax^2+by^2=5\),\(ax^3+by^3=7\),
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2018

Dùng máy tính casio thực hiện quy trình bấm phím liên tục như sau:

X=X+1:B=2B:A=A+B (X=1;C=1;A=3)

Thì ta được ax5+by5=33

Ấn lt bn xẽ biết ax2015+by2015

24 tháng 10 2017

https://l.facebook.com/l.php?u=https%3A%2F%2Fdiendan.hocmai.vn%2Fthreads%2Flai-mot-bai-hoi-bi-kho-ne.226600%2F&h=ATPqu0VSzda9HN6swPmBXeYI_mLVFweVVBz72hMQdgv8WnX0mStwGwBOxPLOstENmMST5KDKsbNuoFCvtOGM2CoqQpz94ahFl9MGizb0_iA8MRBBsDChfE7x3A22qDBUSKGjOjCJFPZu

24 tháng 10 2017

2, (x,y,z)=(1,2,3)

8 tháng 1 2017

Đặt B là mẫu thức của P thì :

B = ab(x - y)2 + bc(y - z)2 + ca(z - x)2 = abx2 - 2abxy + aby2 + bcy2 - 2bcyz + bcz2 + caz2 - 2cazx + cax2

   = ax2(b + c) + by2(a + c) + cz2(a + b) - 2(bcyz + acxz + abxy) (1)

ax + by + cz = 0 => (ax + by + cz)2 = 0 <=> a2x2 + b2y2 + c2z2 + 2(bcyz + acxz + abxy) = 0 

=> -2(bcyz + acxz + abxy) = a2x2 + b2y2 + c2z2 (2)

Từ (1) và (2),ta có : B = ax2(b + c) + by2(a + c) + cz2(a + b) + a2x2 + b2y2 + c2z2

= ax2(a + b + c) + by2(a + b + c) + cz2(a + b + c) = (a + b + c)(ax2 + by2 + cz2)

\(\Rightarrow P=\frac{1}{a+b+c}=2017\)

8 tháng 1 2017

P=2017

25 tháng 5 2017

Đặt \(Q=\sqrt[3]{ax^{2\:}+by^2+cz^2}=\sqrt[3]{\frac{ax^3}{x}+\frac{by^3}{y}+\frac{cz^3}{z}}\)

\(=\sqrt[3]{\frac{ax^3}{x}+\frac{ax^3}{y}+\frac{ax^3}{z}}=\sqrt[3]{ax^3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)}=\sqrt[3]{ax^{3\:}}=x\sqrt[3]{a}\)

\(\Rightarrow\sqrt[3]{a}=\frac{Q}{x}\)

Tương tự ta có: \(\hept{\begin{cases}\sqrt[3]{b}=\frac{Q}{y}\\\sqrt[3]{c}=\frac{Q}{z}\end{cases}}\)

\(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=\frac{Q}{x}+\frac{Q}{y}+\frac{Q}{z}=Q\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=Q\)

Vậy....

25 tháng 5 2017

Đẳng thức cần chứng minh tương đương với

\(ax^2+by^2+cz^2=\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)^3\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(ax^2+by^2+cz^2\right)\)

\(\ge\left(\sqrt[3]{\frac{1}{x}\cdot\frac{1}{x}\cdot ax^2}+\sqrt[3]{\frac{1}{y}\cdot\frac{1}{y}\cdot by^2}+\sqrt[3]{\frac{1}{z}\cdot\frac{1}{z}\cdot cz^2}\right)^3\)

\(=\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)^3=VP\)

Do \(ax^2=by^2=cz^2\) nên đẳng thức có xảy ra 

1 tháng 8 2016

ĐẶT: T= \(\sqrt[3]{ax^2+by^2+cz^2}=\sqrt[3]{\frac{ax^3}{x}+\frac{by^3}{y}+\frac{cz^3}{z}}=\sqrt[3]{ax^3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)}=x\sqrt[3]{a}\)
\(\Rightarrow\sqrt[3]{a}=\frac{T}{x}\)
tuowng tự ta đc \(\sqrt[3]{b}=\frac{T}{y};\sqrt[3]{c}=\frac{T}{z}\)
\(\Rightarrow\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=\frac{T}{x}+\frac{T}{y}+\frac{T}{z}=T\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=T\left(dpcm\right)\)

2 tháng 8 2016

cám ơn  bạn nha!