\(\hept{\begin{cases}ax+by=3\\ax^2+by^2=5\\ax^3+by^3=9\end{cases}}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2017

https://l.facebook.com/l.php?u=https%3A%2F%2Fdiendan.hocmai.vn%2Fthreads%2Flai-mot-bai-hoi-bi-kho-ne.226600%2F&h=ATPqu0VSzda9HN6swPmBXeYI_mLVFweVVBz72hMQdgv8WnX0mStwGwBOxPLOstENmMST5KDKsbNuoFCvtOGM2CoqQpz94ahFl9MGizb0_iA8MRBBsDChfE7x3A22qDBUSKGjOjCJFPZu

24 tháng 10 2017

2, (x,y,z)=(1,2,3)

21 tháng 5 2018

Dùng máy tính casio thực hiện quy trình bấm phím liên tục như sau:

X=X+1:B=2B:A=A+B (X=1;C=1;A=3)

Thì ta được ax5+by5=33

Ấn lt bn xẽ biết ax2015+by2015

2 tháng 3 2018

bn tham khảo trang https://www.slideshare.net/bluebookworm06_03/tng-hp-h-pt

2 tháng 3 2018

Ko có bạn ơi :<

8 tháng 1 2017

Đặt B là mẫu thức của P thì :

B = ab(x - y)2 + bc(y - z)2 + ca(z - x)2 = abx2 - 2abxy + aby2 + bcy2 - 2bcyz + bcz2 + caz2 - 2cazx + cax2

   = ax2(b + c) + by2(a + c) + cz2(a + b) - 2(bcyz + acxz + abxy) (1)

ax + by + cz = 0 => (ax + by + cz)2 = 0 <=> a2x2 + b2y2 + c2z2 + 2(bcyz + acxz + abxy) = 0 

=> -2(bcyz + acxz + abxy) = a2x2 + b2y2 + c2z2 (2)

Từ (1) và (2),ta có : B = ax2(b + c) + by2(a + c) + cz2(a + b) + a2x2 + b2y2 + c2z2

= ax2(a + b + c) + by2(a + b + c) + cz2(a + b + c) = (a + b + c)(ax2 + by2 + cz2)

\(\Rightarrow P=\frac{1}{a+b+c}=2017\)

8 tháng 1 2017

P=2017

28 tháng 3 2020

hệ phương trình nhận x=1 , y=\(1+\sqrt{3}\)là nghiệm

\(\Leftrightarrow\hept{\begin{cases}a+\left(1+\sqrt{3}\right)b=\sqrt{3}\\1+\left(1+\sqrt{3}\right)a=\sqrt{3}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=\frac{\left(\sqrt{3}-1\right)^2}{2}\\b=\frac{\sqrt{3}-\left(\frac{\sqrt{3}-1}{2}\right)^2}{1+\sqrt{3}}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=\frac{(\sqrt{3}-1)^2}{2}\\b=\frac{2.\sqrt{3}-2}{1+\sqrt{3}}\end{cases}\Leftrightarrow\hept{\begin{cases}a=\frac{\left(\sqrt{3}-1\right)^2}{2}\\b=\frac{2\left(\sqrt{3}-1\right)^2}{2}\end{cases}}}\)