Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A+B+C=x^2yz+xy^2z+xyz^2=xyz\left(x+y+z\right)=xyz\)
\(A=x^2yz\) \(B=xy^2z\) \(C=xyz^2\)
\(A+B+C=x^2yz+xy^2z+xyz^2\)
\(=xyz\left(x+y+z\right)=xyz.1=xyz\)
hộ caiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Ta có : \(A+B+C=x^2yz+xy^2z+xyz^2\)
\(=xyz\left(x+y+z\right)\)
\(=xyz\left(đpcm\right)\)
x=1;y=-1;z=2 nhé bn đấy là tìm mò còn lời giải để mình nghĩ cái ( hơi lâu đấy =((( )
Ta có:
\(A=x^2yz=x.x.y.z=x.xyz\left(1\right)\)
\(B=xy^2z=x.y.y.z=y.xyz\left(2\right)\)
\(C=xyz^2=x.y.z.z=z.xyz\left(3\right)\)
Lấy (1)+(2)+(3),vế theo vế ta được:
\(A+B+C=x.xyz+y.xyz+z.xyz=\left(x+y+z\right).xyz=xyz\) (vì x+y+z=1)
Vậy A+B+C=xyz (đpcm)