K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2015

Ta có: \(\left(ad+bc\right)\left(ac+bd\right)=0\Leftrightarrow a^2cd+abc^2+abd^2+bc^2d=0\Leftrightarrow\left(c^2+d^2\right)ab+\left(a^2+b^2\right)cd=0\Leftrightarrow2010\left(ab+cd\right)=0\)

Vậy: \(ab+cd=0\)

28 tháng 9 2016

2/ Ta có \(\left(a+b+c+d\right)^2\ge\frac{8}{3}\left(ab+ac+ad+bc+bd+cd\right)\)

\(\Leftrightarrow a^2+b^2+c^2+d^2+2\left(ab+ac+ad+bc+bd+cd\right)\ge\frac{8}{3}\left(ab+ac+ad+bc+bd+cd\right)\)

\(\Leftrightarrow3\left(a^2+b^2+c^2+d^2\right)+6\left(ab+ac+ad+bc+bd+cd\right)\ge8\left(ab+ac+ad+bc+bd+cd\right)\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(a^2-2ad+d^2\right)+\left(b^2-2bc+c^2\right)+\left(b^2-2bd+d^2\right)+\left(c^2-2cd+d^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2+\left(c-d\right)^2\ge0\)(luôn đúng)

Vậy bđt ban đầu được chứng minh.

13 tháng 4 2017

Ui đau đầu quá !

27 tháng 7 2016

Mình chỉ biết câu 2 thoi được hong?

n2+n+1

= n2+n+\(\frac{1}{4}\)+\(\frac{3}{4}\)

= (n+\(\frac{1}{2}\))2 +\(\frac{3}{4}\)

Chứng tỏ đó không phải là số chính phương

1 tháng 11 2019

Trả lời câu 1 thôi nha

Xét \(ab+cd=ab\left(c^2+d^2\right)+cd\left(a^2+b^2\right)\)Vì a^2+b^2=c^2+d^2=1

                      \(=\)\(abc^2+abd^2+a^2cd+b^2cd\)  

                      \(=ad\left(bd+ac\right)+bc\left(bd+ac\right)\)

                      \(=\left(ad+bc\right)\left(bd+ac\right)=0\left(đpcm\right)\)

Bài 2: 

a+b+c+d=0

nên b+c=-(a+d)

\(a^3+b^3+c^3+d^3\)

\(=\left(a+d\right)^3-3ad\left(a+d\right)+\left(b+c\right)^3-3bc\left(b+c\right)\)

\(=-\left(b+c\right)^3+3ad\left(b+c\right)+\left(b+c\right)^3-3bc\left(b+c\right)\)

\(=3ad\left(b+c\right)-3bc\left(b+c\right)\)

\(=\left(b+c\right)\left(3ad-3bc\right)\)

\(=3\left(b+c\right)\left(ad-bc\right)\)

5 tháng 7 2017

cần gắp