Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\hept{1\begin{cases}ab=x\\bc=y\\ca=z\end{cases}}\)thì ta có
\(x^3+y^3+z^3-3xyz=0\)
\(\Leftrightarrow\left(x+y\right)^3+z^3-3xyz-3xy\left(x+y\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2+2xy+xz-yz\right)-3xy\left(x+y+z\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)
Ta có: x2 + y2 + z2 - xy - yz - xz = 0
Đây là bất đẳng thức quen thuộc nên mình không chứng minh nhé.
Dấu = xảy ra khi x = y = z hay a = b = c
=> E = 2.2.2 = 8
Còn: x + y + z = 0 thì bạn nghĩ tiếp nhé
\(a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)
\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
Đặt \(\frac{1}{a}=x,\frac{1}{b}=y,\frac{1}{c}=z\)
\(x^3+y^3+z^3=3xyz\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+y+z=0\\x=y=z\end{cases}}\)
mà \(a,b,c\)dương nên \(x=y=z\Rightarrow a=b=c\).
\(A=\left(2+\frac{a}{b}\right)\left(2+\frac{b}{c}\right)\left(2+\frac{c}{a}\right)=3^3=27\).
\(3a^2\)\(b^2\)\(c^2\)
\(=>ab+bc+ca=0\)
\(=>ab^2\)\(+bc^2\)\(+ca^2\)\(=0\)
\(TH1:ab+bc+ca=0\)
\(ab+bc=-ca\)
\(=>a+c=-\frac{ac}{b}\)
\(=>a+b=-\frac{ab}{c}\)
\(b+c=-\frac{bc}{a}\)
\(Thay\)\(A\)
\(=>A=-3\)
\(\left(ab-bc\right)^2\)\(+\left(bc-ca\right)^2\)\(+\left(ca-ab\right)^2\)\(=0\)
\(=>ab-bc=0\)
\(bc-ca=0\)
\(ca-ab=0\)
\(=>ab=bc=ca\)
\(=>a=b=c\)
\(Thay\)\(A\)
\(=>A=-24\)
\(=>A=\left(-3;-24\right)\)
Em làm sai mong anh thông cảm cho ạ
Ai biết cách làm thì nhanh tay giải giùm mình nhé!!!!!!!!!!!!
mk đang cần gấp....<3<3<3<3<3<3
Ta có:
\(a^3+b^3+c^3=3abc=>a^3+b^3+c^3-3abc=0\)
\(=>\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc=0\)
\(=>\left[\left(a+b\right)^3+c^3\right]-3a^2b-3ab^2-3abc=0\)
\(=>\left[\left(a+b\right)^3+c^3\right]-3ab\left(a+b+c\right)=0\)
\(=>\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)
\(=>\left(a+b+c\right)\left(a^2+2ab+b^2-ca-bc+c^2-3ab\right)=0\)
\(=>\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
Vì a3+b3+c3=3abc và a+b+c khác 0
=>\(a^2+b^2+c^2-ab-bc-ca=0\)
\(=>2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(=>\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(=>\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Tổng 3 số không âm = 0 <=> chúng đều = 0
\(< =>\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}< =>a=b=c}\)
Vậy \(\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{1}{3}\)
\(\)
Ta có ; \(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-bc-ac\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\frac{a+b+c}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
Vì \(a+b+c\ne0\) nên ta có \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Leftrightarrow a=b=c\)
a) Thay a = b = c vào biểu thức được : \(\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)
b) Thay a = b = c vào P : \(P=\frac{2}{a}.\frac{2}{b}\frac{2}{c}=\frac{8}{abc}\)
Bài 1: Chưa đủ dữ kiện để tính. Từ $a+b=2$ bạn chỉ có thể tính $a^2+b^2+2ab$
Bài 2:
\(a^2+b^2-ab-a-b+1=0\)
\(\Leftrightarrow 2a^2+2b^2-2ab-2a-2b+2=0\)
\(\Leftrightarrow (a^2-2ab+b^2)+(a^2-2a+1)+(b^2-2b+1)=0\)
\(\Leftrightarrow (a-b)^2+(a-1)^2+(b-1)^2=0\)
Vì \((a-b)^2\geq 0; (a-1)^2\geq 0;(b-1)^2\geq 0, \forall a,b\in\mathbb{R}\)
\(\Rightarrow (a-b)^2+(a-1)^2+(b-1)^2\geq 0\)
Dấu "=" xảy ra khi \((a-b)^2=(a-1)^2=(b-1)^2=0\Leftrightarrow a=b=1\)
Bài 3:
\(x+y=x^3+y^3=(x+y)(x^2-xy+y^2)\)
\(\Leftrightarrow (x+y)(x^2-xy+y^2-1)=0\)
\(\Rightarrow \left[\begin{matrix} x+y=0\\ x^2-xy+y^2-1=0\end{matrix}\right.\).
Nếu $x+y=0$ \(\Rightarrow x^2+y^2=x+y=0\)
Mà \(x^2\geq 0, y^2\geq 0, \forall x,y\) nên để tổng của chúng bằng $0$ thì \(x^2=y^2=0\Leftrightarrow x=y=0\) (thỏa mãn)
Nếu \(x^2-xy+y^2-1=0\)
\(\Leftrightarrow (x^2+y^2)-xy-1=0\)
\(\Leftrightarrow x+y-xy-1=0\)
\(\Leftrightarrow (x-1)(1-y)=0\) \(\Rightarrow \left[\begin{matrix} x=1\\ y=1\end{matrix}\right.\)
\(x=1\Rightarrow 1+y=1+y^2=1+y^3\)
\(\Leftrightarrow y=y^2=y^3\Rightarrow y=0\) hoặc $y=1$
\(y=1\Rightarrow x+1=x^2+1=x^3+1\)
\(\Leftrightarrow x=x^2=x^3\Rightarrow x=0\) hoặc $x=1$.
Vậy $(x,y)=(0,0); (1,0), (0,1), (1,1)$
\(sigma\frac{a^2+b^2}{ab\left(a+b\right)^3}\ge sigma\frac{\frac{\left(a+b\right)^2}{2}}{\left(a+b\right)^2\left(a^3+b^3\right)}=sigma\frac{1}{2\left(a^3+b^3\right)}\ge\frac{9}{4\left(a^3+b^3+c^3\right)}=\frac{9}{4}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt[3]{3}}\)