Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có a(b+c)^2 +b(c+a)^2+c(a+b)^2 =4abc
ab^2+ac^2+2abc+ba^2bc^2+2abc+ca^2+cb^2+2abc=4abc
ab^2+ac^2+bc^2+ba^2+cb^2+ca^2+2abc=0
(ab^2+abc)+(ac^2+abc)+(bc^2+cb^2)+(a^2b+a^2c)=0
ab(b+c)+ac(b+c)+bc(b+c)+a^2(b+c)=0
(b+c)(ab+ac+bc+a^2)=0
(b+c)(a+b)(a+c)=0
*th1:b+c=0=> b=-c
=> b^2017 +c^2017 =0
mà a^2017 +b^2017 +c^2017=1
=>a^2017=1 => a=1
thay vào A rồi dc A=1
các th khác tương tự
\(a^2\left(b+c\right)+b^2\left(a+c\right)+c^2\left(a+b\right)+2abc=0\)
\(\Leftrightarrow a^2b+a^2c+ab^2+b^2c+ac^2+bc^2+2abc=0\)
\(\Leftrightarrow ab\left(a+b+c\right)+bc\left(a+b+c\right)+ac\left(a+c\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)
+) Với : \(a=-b\) , ta có :
\(a^{2019}+b^{2019}+c^{2019}=1\Leftrightarrow c=1\)
\(\Rightarrow Q=\dfrac{1}{a^{2019}}+\dfrac{1}{\left(-b\right)^{2019}}+1=1\)
Tương tự với 2 TH còn lại .
Ta đều có được : \(Q=1\)
\(2x^2+y^2+z^2-2xy-2x+1=0\)
\(\Rightarrow\left(x^2+y^2-2xy\right)+\left(x^2-2x+1\right)+z^2=0\)
\(\Rightarrow\left(x-y\right)^2+\left(x-1\right)^2+z^2=0\)
\(\Leftrightarrow x=y=1;=0\)
\(A=x^{2018}+y^{2019}+z^{2020}=1+1+0=2\)
2)
\(a+b+c=6\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=36\)
\(\Leftrightarrow12+2\left(ab+bc+ac\right)=36\Leftrightarrow ab+bc+ac=12\)
Kết hợp với \(a^2+b^2+c^2=12\Leftrightarrow a^2+b^2+c^2=ab+bc+ac\)
\(\Leftrightarrow\dfrac{1}{2}\left(a-b\right)^2+\dfrac{1}{2}\left(b-c\right)^2+\dfrac{1}{2}\left(c-a\right)^2=0\Leftrightarrow a=b=c\)
Kết hợp với \(a+b+c=6\Leftrightarrow a=b=c=2\)
\(P=\left(a-3\right)^{2019}+\left(b-3\right)^{2019}+\left(c-3\right)^{2019}=\left(-1\right)^{2019}+\left(-1\right)^{2019}+\left(-1\right)^{2019}=-3\)
Ta có \(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow a^3+b^3+3a^2b+3ab^2+c^3-3abc-3a^2b-3ab^2=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-bc-ac\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\frac{1}{2}\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)=0\)
\(\Leftrightarrow\frac{1}{2}\left(a+b+c\right)\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\right]=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)
\(\Rightarrow M=\frac{a^{2019}}{b^{2019}}+\frac{b^{2019}}{c^{2019}}+\frac{c^{2019}}{a^{2019}}=\frac{a^{2019}}{a^{2019}}+\frac{b^{2019}}{b^{2019}}+\frac{c^{2019}}{c^{2019}}=1+1+1=3\)
Lời giải:
\(a^3+b^3=c^3+d^3\)
$\Leftrightarrow (a+b)^3-3ab(a+b)=(c+d)^3-3cd(c+d)$
Mà $a+b=c+d$ nên $ab(a+b)=cd(c+d)$
Đến đây ta xét 2TH:
TH $a+b=c+d=0$ thì $a^{2019}+b^{2019}=c^{2019}+d^{2019}=0$ (đpcm)
TH $a+b=c+d\neq 0$ thì $ab=cd\Leftrightarrow \frac{a}{d}=\frac{c}{b}$
Đặt $\frac{a}{d}=\frac{c}{b}=t\Rightarrow a=dt; c=bt$
Khi đó:
$a+b=c+d$
$\Leftrightarrow dt+b=bt+d\Leftrightarrow (t-1)(d-b)=0$
Nếu $t-1=0\Rightarrow a=d; c=b$
$\Rightarrow a^{2019}=d^{2019}; b^{2019}=c^{2019}$
$\Rightarrow a^{2019}+b^{2019}=c^{2019}+d^{2019}$ (đpcm)
Nếu $d-b=0\Leftrightarrow b=d\Rightarrow a=c$
$\Rightarrow a^{2019}+b^{2019}=c^{2019}+d^{2019}$ (đpcm)
Vậy..........
\(a^2+b^2+c^2=2\left(a+b+c\right)-3\)
\(\Rightarrow a^2+b^2+c^2-2a-2b-2c+3=0\)
\(\Rightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)
\(\Rightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)
\(\Rightarrow a=b=c=1\)
Thay và S ta được:
\(S=1^{2019}+1^{2019}+1^{2019}=1+1+1=3\)
Nguyễn Thanh Hằng