K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2017

Trùi ui,khó quá đi mất

8 tháng 3 2017

bđt C-B-S dạng tổng quát, trên mạng có chứng minh

AH
Akai Haruma
Giáo viên
7 tháng 10 2019

Bài 2:

\(a^{100}+b^{100}=a^{101}+b^{101}=a^{102}+b^{102}\)

\(\Rightarrow \left\{\begin{matrix} a^{100}(a-1)+b^{100}(b-1)=0(1)\\ a^{101}(a-1)+b^{101}(b-1)=0(2)\end{matrix}\right.\)

\(\Rightarrow a^{101}(a-1)-a^{100}(a-1)+b^{101}(b-1)-b^{100}(b-1)=0\) (lấy $(2)-(1)$)

\(\Leftrightarrow a^{100}(a-1)^2+b^{100}(b-1)^2=0\)

Dễ thấy \(a^{100}(a-1)^2\geq 0; b^{100}(b-1)^2\geq 0, \forall a,b\)

Do đó để tổng của chúng là $0$ thì \(a^{100}(a-1)^2=b^{100}(b-1)^2=0\)

Kết hợp với $a,b$ dương nên $a=b=1$

$\Rightarrow P=a^{2007}+b^{2007}=2$

AH
Akai Haruma
Giáo viên
7 tháng 10 2019

Bài 1:

Vì $a_i\in \left\{\pm 1\right\}$ nên $a_ia_j\in \left\{\pm 1\right\}$ với mọi $i,j=\overline{1,n}$. Khi đó:

Để tổng gồm $n$ số hạng $a_1a_2+a_2a_3+...+a_na_1=0$ thì $n$ phải chẵn và trong tổng trên có $\frac{n}{2}$ số hạng có giá trị $1$ và $\frac{n}{2}$ số hạng có giá trị $-1$

\(\Rightarrow a_1a_2.a_2a_3....a_na_1=(1)^{\frac{n}{2}}.(-1)^{\frac{n}{2}}=(-1)^{\frac{n}{2}}\)

\(\Leftrightarrow (a_1a_2...a_n)^2=(-1)^{\frac{n}{2}}\)

Vì $(a_1a_2...a_n)^2$ luôn không âm nên $(-1)^{\frac{n}{2}}$ không âm.

$\Rightarrow \forall n\in\mathbb{N}^*$ thì $\frac{n}{2}$ chẵn

$\Rightarrow n\vdots 4$

Mà $2006\not\vdots 4$ nên $n$ không thể là $2006$

15 tháng 9 2019

Ban tham khao BDT Cosi dang tong quat nha

9 tháng 8 2017

full Cauchy-Schwarz nhé tìm trên mạng ko thiếu

3 tháng 1 2019

mn giups mk di 

4 tháng 1 2019

a) BĐT \(\Leftrightarrow2a^2+2b^2-\left(a+b\right)^2\ge0\) (chuyển vế)

Hay \(\Leftrightarrow a^2+b^2-2ab\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Suy ra đpcm

b) BĐT: \(\Leftrightarrow3a^2+3b^2+3c^2-a^2-b^2-c^2-2ab-2bc-2ca\ge0\) (chuyển vế,phá bình phương)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)

c) Đợi tí,ăn sáng đã.

29 tháng 10 2017

a)\(a^2+2ab+b^2\le2a^2+2b^2\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)

Vậy \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

29 tháng 10 2017

b)\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc\le3a^2+3b^2+3c^2\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ac\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\Rightarrowđpcm\)

15 tháng 7 2016

a) Ta có ; \(\left(a-b\right)^2\ge0\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a^2+b^2\right)+\left(a^2+b^2\right)\ge a^2+b^2+2ab\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

b) \(\hept{\begin{cases}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ac\end{cases}}\)Cộng các bất đẳng thức theo vế  \(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)+\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ac\right)\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

c) Áp dụng bất đẳng thức Bunhiacopxki, ta có : 

\(\left(1.a_1+1.a_2+...+1.a_n\right)^2\le\left(1_1+1_2+...+1_n\right)\left(a_1^2+a_2^2+...+a_n^2\right)=n.\left(a_1^2+a_2^2+...+a_n^2\right)\)

15 tháng 7 2016

đợi đến cuối năm sau tui làm cho

11 tháng 9 2016

Kéo xuống 1 xíu có bài t làm rồi đấy