K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2018

\(S^3=\left(\sqrt[3]{7+4\sqrt{3}+}\sqrt[3]{7-4\sqrt{3}}\right)^3\)

= \(7+4\sqrt{3}+7-4\sqrt{3}+3.\sqrt{7+4\sqrt{3}}.\sqrt{7-4\sqrt{3}}.\left(a+b\right)\)

= 14+\(3.\sqrt{49-48}.S\)

= 14+3S

=> S3-3S=14+3S-3S=14

7 tháng 11 2018

\(P=S^3-3S\)

\(P=\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)^3-3\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\)

\(P=7+4\sqrt{3}+3\left(\sqrt[3]{7+4\sqrt{3}}\right)^2.\sqrt[3]{7-4\sqrt{3}}+3.\sqrt[3]{7+4\sqrt{3}}\left(\sqrt[3]{7-4\sqrt{3}}\right)^2+7-4\sqrt{3}\text{​​}\text{​​}-3\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\)

\(P=14+3\sqrt[3]{7+4\sqrt{3}}.\sqrt[3]{7-4\sqrt{3}}\text{​​}\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\text{​​}\text{​​}-3\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\)

\(P=14+3\sqrt[3]{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\text{​​}\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\text{​​}\text{​​}-3\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\)

\(P=14+3\sqrt[3]{49-48}\text{​​}\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\text{​​}\text{​​}-3\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\)

\(P=14+3\text{​​}\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\text{​​}\text{​​}-3\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\)

\(P=14\)

29 tháng 12 2018

\(B=\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)

    \(=\sqrt{\left(\sqrt{3}+2\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)

     \(=\sqrt{3}+2+2-\sqrt{3}\)

   \(=4\)

Còn cách nữa là bình phương

29 tháng 12 2018

Đag làm thì ấn nhầm trả lời .V
Cách bình phương đây

\(B=\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)

\(\Rightarrow B^2=7+4\sqrt{3}+2\sqrt{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}+7-4\sqrt{3}\)

           \(=14+2\sqrt{49-48}\)

            \(=14+2\)

             \(=16\)

\(\Rightarrow B=\sqrt{16}=4\)

6 tháng 8 2017

\(\frac{A}{\sqrt{2}}=\frac{1+\sqrt{7}}{2+\sqrt{8+2\sqrt{7}}}+\frac{1-\sqrt{7}}{2-\sqrt{8-2\sqrt{7}}}\)

         \(=\frac{1+\sqrt{7}}{2+1+\sqrt{7}}+\frac{1-\sqrt{7}}{2-\sqrt{7}+1}\)

            \(=\frac{1+\sqrt{7}}{3+\sqrt{7}}+\frac{1-\sqrt{7}}{3-\sqrt{7}}\)

           =\(\frac{\left(1+\sqrt{7}\right)\left(3-\sqrt{7}\right)+\left(1-\sqrt{7}\right)\left(3+\sqrt{7}\right)}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}\)

          \(=\frac{-8}{2}=-4\)

\(\Rightarrow A=-4\sqrt{2}\)

1: \(=\dfrac{\sqrt{8+2\sqrt{7}}+\sqrt{8-2\sqrt{7}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{7}+1+\sqrt{7}-1}{\sqrt{2}}=\dfrac{2\sqrt{7}}{\sqrt{2}}=\sqrt{14}\)

3: \(=\sqrt{6+2\sqrt{2\cdot\sqrt{3-\sqrt{3}-1}}}\)

\(=\sqrt{6+2\sqrt{2\cdot\sqrt{2-\sqrt{3}}}}\)

\(=\sqrt{6+2\sqrt{\sqrt{2}\left(\sqrt{3}-1\right)}}\)

\(=\sqrt{6+2\sqrt{\sqrt{6}-\sqrt{2}}}\)

30 tháng 6 2017

a.\(\left(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\right).\left(\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\right)\)

\(=\left(\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\right).\left(\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\right)\)

\(=\left(\sqrt{3}+1-\sqrt{3}+1\right)\left(\sqrt{3}-1+\sqrt{3}+1\right)\)

\(=2.2\sqrt{3}=4\sqrt{3}\)

b.\(\left(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\right)^2=\left[\frac{\sqrt{8+2\sqrt{7}}}{\sqrt{2}}-\frac{\sqrt{8-2\sqrt{7}}}{\sqrt{2}}\right]^2\)

\(=\left(\frac{\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}-\frac{\sqrt{\left(\sqrt{7}-1\right)^2}}{\sqrt{2}}\right)^2\)

\(=\left(\frac{\sqrt{7}+1-\sqrt{7}+1}{\sqrt{2}}\right)^2=\left(\sqrt{2}\right)^2=2\)

c.\(\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\sqrt{5-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(=\sqrt{5-\sqrt{3-\left(2\sqrt{5}-3\right)}}=\sqrt{5-\sqrt{6-2\sqrt{5}}}\)

\(=\sqrt{5-\sqrt{\left(\sqrt{5}-1\right)^2}}=\sqrt{5-\sqrt{5}+1}=\sqrt{6-\sqrt{5}}\)

30 tháng 6 2017

!?

em ko biết làm!

...

1: \(=\dfrac{\sqrt{8+2\sqrt{7}}+\sqrt{8-2\sqrt{7}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{7}+1+\sqrt{7}-1}{\sqrt{2}}=\dfrac{2\sqrt{7}}{\sqrt{2}}=\sqrt{14}\)

3: \(=\sqrt{6+2\sqrt{2\cdot\sqrt{3-\sqrt{3}-1}}}\)

\(=\sqrt{6+2\sqrt{2\cdot\sqrt{2-\sqrt{3}}}}\)

\(=\sqrt{6+2\sqrt{\sqrt{2}\left(\sqrt{3}-1\right)}}\)

\(=\sqrt{6+2\sqrt{\sqrt{6}-\sqrt{2}}}\)

17 tháng 8 2020

ta có \(A=\frac{3+\sqrt{5}}{4+\sqrt{2\left(3+\sqrt{5}\right)}}=\frac{3+\sqrt{5}}{4+\sqrt{6+2\sqrt{5}}}=\frac{3+\sqrt{5}}{4+\sqrt{\left(\sqrt{5}+1\right)^2}}=\frac{\left(3+\sqrt{5}\right)}{5+\sqrt{5}}\)\(=\frac{\left(5-\sqrt{5}\right)\left(3+\sqrt{5}\right)}{20}=\frac{5+\sqrt{5}}{10}\)

tương tự \(B=\frac{3-\sqrt{5}}{4-\sqrt{2\left(3-\sqrt{5}\right)}}=\frac{5-\sqrt{5}}{10}\)

\(\Rightarrow A-B=\frac{\sqrt{5}}{5},A+B=1;AB=\frac{1}{5}\)

vậy \(A^3-B^3=\left(A-B\right)\left(A^2+AB+B^2\right)=\left(A+B\right)\left[\left(A+B\right)^2-AB\right]=\frac{\sqrt{5}}{5}\left(1-\frac{1}{5}\right)\cdot\frac{4}{5}=\frac{4\sqrt{5}}{25}\)