K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2019

Ta có:

 \(\frac{a^2+b^2}{\left|a-b\right|}=\frac{\left(a-b\right)^2+2ab}{\left|a-b\right|}=\frac{\left|a-b\right|^2+12}{\left|a-b\right|}=\left|a-b\right|+\frac{12}{\left|a-b\right|}\ge2\sqrt{12}=4\sqrt{3}\)

Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}ab=6\\\left|a-b\right|=\frac{12}{\left|a-b\right|}\end{cases}}\) Em tự tìm a và b nhé!

5 tháng 5 2020

Với a, b > 0 và ab = 6

\(\frac{a^2+b^2}{|a-b|}\ge4\sqrt{3}\)

<=> \(\left(a-b\right)^2+2ab\ge4\sqrt{3}\left|a-b\right|\)

<=> \(\left(a-b\right)^2-2\left|a-b\right|2\sqrt{3}+12\ge0\)

<=> \(\left(\left|a-b\right|-2\sqrt{3}\right)^2\ge0\)đúng 

Dấu "=" xảy ra <=> \(\left|a-b\right|=2\sqrt{3}\Leftrightarrow\left(a+b\right)^2-4ab=12\)

<=> \(a+b=6\) vì a , b > 0 

a; b là nghiệm phương trình: X^2 - 6X + 6 = 0 <=> \(X=3+\sqrt{3}\) hoặc \(X=3-\sqrt{3}\)

=> (a ; b) = ( \(3+\sqrt{3};3-\sqrt{3}\)) hoặc ( a; b ) = ( \(3-\sqrt{3};3+\sqrt{3}\)

Vậy \(\frac{a^2+b^2}{|a-b|}\ge4\sqrt{3}\)

AH
Akai Haruma
Giáo viên
5 tháng 8 2020

Lời giải:
Bổ sung điều kiện $a\neq b$

Ta có: $\frac{a^2+b^2}{|a-b|}\geq 4\sqrt{3}$

$\Leftrightarrow a^2+b^2\geq 4\sqrt{3}|a-b|$

$\Leftrightarrow (a-b)^2+2ab-4\sqrt{3}|a-b|\geq 0$

$\Leftrightarrow |a-b|^2+12-4\sqrt{3}|a-b|\geq 0$

$\Leftrightarrow (|a-b|-2\sqrt{3})^2\geq 0$ (luôn đúng)

Do đó ta có đpcm.

Dấu "=" xảy ra khi $|a-b|=2\sqrt{3}$ và $ab=6$ hay $(a,b)=(3+\sqrt{3}, 3-\sqrt{3})$ và hoán vị

AH
Akai Haruma
Giáo viên
27 tháng 1 2019

Lời giải:

Do $ab=6$ nên \(a^2+b^2=(a-b)^2+2ab=(a-b)^2+12\)

Đặt \(|a-b|=t(t>0)\). Khi đó:
\(\frac{a^2+b^2}{|a-b|}=\frac{(a-b)^2+12}{|a-b|}=\frac{t^2+12}{t}=\frac{t^2-4\sqrt{3}t+12}{t}+4\sqrt{3}\)

\(=\frac{(t-2\sqrt{3})^2}{t}+4\sqrt{3}\geq 4\sqrt{3}\) với mọi \(t>0\)

Ta có đpcm

Dấu "=" xảy ra khi \(\left\{\begin{matrix} ab=6\\ |a-b|=t=2\sqrt{3}\end{matrix}\right.\)

27 tháng 1 2019

Lời giải hoành tránh

loại trên mây có biết sai ở đâu không

nếu là lời giải của hs lớp 6 thì tạm chấp nhận

lời giải của GV chửi cho ngu như con BÒ . nếu không muôn chửi là ngu thì sửa lời giải đi

mà loại mày Akai Harumasao biết sai ở đâu mà sửa

19 tháng 8 2018

mn giúp mk với

19 tháng 8 2018

hình như đề sai

bạn vào câu hỏi tương tự nhé

học tốt

13 tháng 11 2018

\(\frac{a^2+b^2}{a-b}=\frac{\left(a-b\right)^2+2ab}{a-b}=a-b+\frac{2ab}{a-b}=a-b+\frac{12}{a-b}\ge2\sqrt{12}=4\sqrt{3}\left(Cauchy\right)\)

AH
Akai Haruma
Giáo viên
30 tháng 10 2020

1. Ta thấy:

\(\frac{(a-b)^3}{(\sqrt{a}-\sqrt{b})^3}-b\sqrt{b}+2a\sqrt{a}=\frac{(\sqrt{a}-\sqrt{b})^3(\sqrt{a}+\sqrt{b})^3}{(\sqrt{a}-\sqrt{b})^3}-b\sqrt{b}+2a\sqrt{a}\)

\(=(\sqrt{a}+\sqrt{b})^3-b\sqrt{b}+2a\sqrt{a}=a\sqrt{a}+b\sqrt{b}+3\sqrt{ab}(\sqrt{a}+\sqrt{b})-b\sqrt{b}+2a\sqrt{a}\)

\(=3a\sqrt{a}+3\sqrt{ab}(\sqrt{a}+\sqrt{b})=3\sqrt{a}(a+\sqrt{ab}+b)\)

$a\sqrt{a}-b\sqrt{b}=(\sqrt{a}-\sqrt{b})(a+\sqrt{ab}+b)$

\(\frac{\frac{(a-b)^3}{(\sqrt{a}-\sqrt{b})^3}-b\sqrt{b}+2a\sqrt{a}}{a\sqrt{a}-b\sqrt{b}}=\frac{3\sqrt{a}}{\sqrt{a}-\sqrt{b}}(1)\)

\(\frac{3a+3\sqrt{ab}}{b-a}=\frac{3\sqrt{a}(\sqrt{a}+\sqrt{b})}{(\sqrt{b}-\sqrt{a})(\sqrt{b}+\sqrt{a})}=\frac{-3\sqrt{a}}{\sqrt{a}-\sqrt{b}}(2)\)

Từ $(1);(2)$ ta có đpcm.

AH
Akai Haruma
Giáo viên
30 tháng 10 2020

Câu 2:

Điều kiện đã cho tương đương với:

$\frac{a-b}{a(a+b)}+\frac{a+b}{a(a-b)}=\frac{3a-b}{(a-b)(a+b)}$

$\Leftrightarrow \frac{(a-b)^2}{a(a+b)(a-b)}+\frac{(a+b)^2}{a(a-b)(a+b)}=\frac{a(3a-b)}{a(a-b)(a+b)}$

$\Leftrightarrow (a-b)^2+(a+b)^2=a(3a-b)$

$\Leftrightarrow 2a^2+2b^2=3a^2-ab$

$\Leftrightarrow a^2-ab-2b^2=0$

$\Leftrightarrow (a+b)(a-2b)=0$

$\Leftrightarrow a=-b$ hoặc $a=2b$

Nếu $a=-b$ thì $|a|=|b|$ (trái giả thiết). Do đó $a=2b$

Khi đó:

$P=\frac{(2b)^3+2(2b)^2.b+3b^3}{2(2b)^3+2b.b^2+b^3}=\frac{19b^3}{19b^3}=1$