K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2018

\(\left[9-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\right)\right]\div\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{9}{10}\right)\)

\(=\left[\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\right)\right]\div\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{9}{10}\right)\)

                        có 9 số 1                                                   có 9 số hạng

\(=\left[\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{4}\right)+...+\left(1-\frac{1}{10}\right)\right]\div\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{9}{10}\right)\)

\(=\left[\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{9}{10}\right]\div\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{9}{10}\right)\)

\(=1\)

30 tháng 5 2018

\(\Rightarrow S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+..+\frac{1}{n^2}-\frac{1}{n+1^2}\)

\(\Rightarrow S=1-\frac{1}{n+1}\)

\(\Rightarrow S+\frac{n}{n+1}\)

3 tháng 5 2017

Ta có: \(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)

\(=\left(-\frac{1.3}{2.2}\right).\left(-\frac{2.4}{3.3}\right)...\left(-\frac{99.101}{100.100}\right)\)

\(=-\frac{1}{2}.\frac{101}{100}=-\frac{101}{200}< -\frac{100}{200}=-\frac{1}{2}\)

Vậy \(A< -\frac{1}{2}\)

29 tháng 5 2017

\(A=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)...\left(\frac{1}{10000}-1\right)\)

\(=\frac{-3}{4}\cdot\frac{-8}{9}\cdot\frac{-15}{16}\cdot...\cdot\frac{-9999}{10000}\)

\(=\frac{-1\cdot3}{2\cdot2}\cdot\frac{-2\cdot4}{3\cdot3}\cdot...\cdot\frac{-99\cdot111}{100.100}\)

\(=\frac{1\cdot3}{2\cdot2}\cdot\frac{2\cdot4}{3\cdot3}\cdot...\cdot\frac{99\cdot111}{100\cdot100}\)

\(=\frac{\left(1\cdot2\cdot3\cdot4\cdot...\cdot99\right)\cdot\left(3\cdot4\cdot5\cdot6\cdot...\cdot111\right)}{\left(1\cdot2\cdot3\cdot4\cdot...\cdot100\right)^2}\)

\(=\frac{101}{2\cdot100}\)

\(=\frac{101}{200}>\frac{1}{2}\)

26 tháng 4 2019

\(A=-\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right).....\left(1-\frac{1}{100^2}\right)\)

\(A=-\left(\frac{1.3}{2.2}\right).\left(\frac{2.4}{3.3}\right)....\left(\frac{99.101}{100.100}\right)\)

\(A=-\left(\frac{1.2....99}{2.3...100}\right).\left(\frac{3.4....101}{2.3....100}\right)\)

\(A=-\left(\frac{1}{100}\right).\left(\frac{101}{2}\right)\)

\(A=\frac{-101}{200}>\frac{-1}{2}\)

2 tháng 3 2020

Thằng điên, có cái đầu bài cx chép sai thì làm ăn đếch j

2 tháng 7 2019

\(a,3x\left(x-\frac{2}{3}\right)=0 \)
\(\)TH1:
3x=0
x=0:3
x=0
       TH2
\(x-\frac{2}{3}=0 \)
\(x=0+\frac{2}{3}=\frac{2}{3}\)
Vậy x={0;\(\frac{2}{3}\)}

2 tháng 7 2019

34 +14 :x=25 

\(\frac{1}{4}:x=\frac{2}{5}-\frac{3}{4}\)

\(\frac{1}{4}:x=-\frac{7}{20}\)
\(x=\frac{1}{4}:-\frac{7}{20}\)
\(x=-\frac{20}{28}\)
\(x=-\frac{5}{7}\)

\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.....\frac{899}{30^2}\)

\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{29.31}{30.30}=\frac{1.2.3.....29}{2.3.4.....30}.\frac{3.4.5.....31}{2.3.4.....30}\)

\(=\frac{1}{2}.\frac{31}{30}=\frac{31}{60}\)

4 tháng 5 2016

A= -(3/4 . 8/9 . 15/16 ... 9999/10000)

 =-( (3.8.15....9999)/(4.9.16...10000))

 = - (( 1.3.2.4.3.5...99.101)/(2.2.3.3.4.4...100.100))

 = -( ( 1.2.3.4...99).(3.4.5..101) / (2.3.4...100) . (2.3.4..100))

 = -101/200< -100/200 = -1/2

Vậy A < -1/2