K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

a: \(B=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{6}{3\left(x-2\right)}+\dfrac{1}{x-2}\right):\left(\dfrac{x^2-4+16-x^2}{x+2}\right)\)

\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x-2}\right):\dfrac{12}{x+2}\)

\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x-2}\right):\dfrac{12}{x+2}\)

\(=\dfrac{x-x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{12}=\dfrac{-1}{6\left(x-2\right)}\)

b: Thay x=1/2 vào B, ta được:

\(B=\dfrac{-1}{6\cdot\left(\dfrac{1}{2}-2\right)}=\dfrac{-1}{6\cdot\dfrac{-3}{2}}=\dfrac{1}{9}\)

Thay x=-1/2 vào B, ta được:

\(B=\dfrac{-1}{6\cdot\left(-\dfrac{1}{2}-2\right)}=-\dfrac{1}{15}\)

c: Để B=2 thì \(\dfrac{-1}{6\left(x-2\right)}=2\)

=>6(x-2)=-1/2

=>x-2=-1/12

hay x=23/12

19 tháng 6 2019

\(\frac{1}{2}x^2\left(6x-3\right)-x\left(x^2+\frac{1}{2}\right)+\frac{1}{2}\left(x+4\right)\)

\(=\frac{1}{2}x^2.6x+\frac{1}{2}x^2.\left(-3\right)+\left(-x\right).x^2+\left(-x\right).\frac{1}{2}+\frac{1}{2}.x+\frac{1}{2}.4\)

\(=3x^3-\frac{3}{2}x^2-x^3-\frac{1}{2}x+\frac{1}{2}x+2\)

\(=\left(3x^3-x^3\right)-\frac{3}{2}x^2+\left(-\frac{1}{2}x+\frac{1}{2}x\right)+2\)

\(=2x^3-\frac{3}{2}x^2+2\)

19 tháng 6 2019

\(a,\)\(\frac{1}{2}x^2\left(6x-3\right)-x\left(x^2+\frac{1}{2}\right)+\frac{1}{2}\left(x+4\right)\)

\(=3x^3-\frac{3}{2}x^2-x^3-\frac{1}{2}x+\frac{1}{2}x+2\)

\(=2x^3-\frac{3}{2}x^2+2\)

\(b,\)\(2x\left(3x^3-x\right)-4x^2\left(x-x^2+1\right)+\left(x-3x^2\right)x\)

\(=6x^4-2x^2-4x^3+4x^4-4x^2+x^2-3x^3\)

\(=10x^4-7x^3-5x^2\)

26 tháng 3 2017

a) ta có :x2+2x+2=(x+1)2+1>0,với mọi x

x2+2x+3=(x+1)2+2>0,với mọi x

ĐKXĐ:x\(\in\)R.Đặt x2+2x+2=a (a>0),ta có:\(\dfrac{a-1}{a}+\dfrac{a}{a+1}=\dfrac{7}{6}\)

<=>\(\dfrac{6\left(a-1\right)\left(a+1\right)}{6a\left(a+1\right)}+\dfrac{6a^2}{6a\left(a+1\right)}=\dfrac{7a\left(a+1\right)}{6a\left(a+1\right)}\)

=>6(a2-1)+6a2=7a2+7a<=>6a2-6+6a2=7a2+7a<=>12a2-7a2-7a-6=0

<=>5a2-7a-6=0<=>(a-2)(5a+3)=0<=>a-2=0(vì a>0,nên 5a+3>0)

<=>a=2=>x2+2x+2=2<=>x(x+2)=0<=>\(|^{x=0}_{x+2=0< =>x=-2}\)

Vậy tặp nghiệm của PT là S\(=\left\{0;-2\right\}\)

AH
Akai Haruma
Giáo viên
3 tháng 11 2019

Lời giải:

a) ĐKXĐ: $x\neq 0; x\neq \pm 2$

\(A=\left(\frac{x^2}{x(x^2-4)}-\frac{6}{3(x-2)}+\frac{1}{x+2}\right):\frac{(x-2)(x+2)+10-x^2}{x+2}\)

\(=\left(\frac{x}{(x-2)(x+2)}-\frac{2}{x-2}+\frac{1}{x+2}\right):\frac{x^2-4+10-x^2}{x+2}\)

\(=\frac{x-2(x+2)+(x-2)}{(x-2)(x+2)}.\frac{x+2}{6}=\frac{-6}{(x-2)(x+2)}.\frac{x+2}{6}=\frac{1}{2-x}\)

b)

Khi \(|x|=\frac{1}{2}\Rightarrow x=\pm \frac{1}{2}\) (thỏa mãn ĐKXĐ)

\(x=\frac{1}{2}\Rightarrow A=\frac{1}{2-\frac{1}{2}}=\frac{2}{3}\)

\(x=-\frac{1}{2}\Rightarrow A=\frac{1}{2--\frac{1}{2}}=\frac{2}{5}\)

AH
Akai Haruma
Giáo viên
3 tháng 10 2019

Lời giải:

a) ĐKXĐ: $x\neq 0; x\neq \pm 2$

\(A=\left(\frac{x^2}{x(x^2-4)}-\frac{6}{3(x-2)}+\frac{1}{x+2}\right):\frac{(x-2)(x+2)+10-x^2}{x+2}\)

\(=\left(\frac{x}{(x-2)(x+2)}-\frac{2}{x-2}+\frac{1}{x+2}\right):\frac{x^2-4+10-x^2}{x+2}\)

\(=\frac{x-2(x+2)+(x-2)}{(x-2)(x+2)}.\frac{x+2}{6}=\frac{-6}{(x-2)(x+2)}.\frac{x+2}{6}=\frac{1}{2-x}\)

b)

Khi \(|x|=\frac{1}{2}\Rightarrow x=\pm \frac{1}{2}\) (thỏa mãn ĐKXĐ)

\(x=\frac{1}{2}\Rightarrow A=\frac{1}{2-\frac{1}{2}}=\frac{2}{3}\)

\(x=-\frac{1}{2}\Rightarrow A=\frac{1}{2--\frac{1}{2}}=\frac{2}{5}\)

13 tháng 2 2020

Giải phương tình nha :v 

13 tháng 2 2020

a) \(\frac{7x}{8}-5\left(x-9\right)=\frac{20x+1,5}{6}\)

\(\Leftrightarrow\frac{7x}{8}-\frac{40\left(x-9\right)}{8}=\frac{20x+1,5}{6}\)

\(\Leftrightarrow\frac{7x}{8}-\frac{40x-360}{8}=\frac{20x+1,5}{6}\)

\(\Leftrightarrow\frac{360-33x}{8}=\frac{20x+1,5}{6}\)

\(\Leftrightarrow2160-198x=160x+12\)

\(\Leftrightarrow358x=2148\)

\(\Leftrightarrow x=6\)

Vậy nghiệm của pt x=6

b)  \(\frac{5\left(x-1\right)+2}{6}-\frac{7x-1}{4}=\frac{2\left(2x+1\right)}{7}-5\)

\(\Leftrightarrow\frac{10\left(x-1\right)+4}{12}-\frac{21x-3}{12}=\frac{4x+2}{7}-\frac{35}{7}\)

\(\Leftrightarrow\frac{-11x-3}{12}=\frac{4x-33}{7}\)

\(\Leftrightarrow-77x-21=48x-396\)

\(\Leftrightarrow125x=375\)

\(\Leftrightarrow3\)

Vậy nghiệm của pt x=3