K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
BX
0
6 tháng 5 2019
Ta có:
\(8=xyz\le\frac{\left(x+y+z\right)^3}{27}\)
\(\Leftrightarrow a=x+y+z\ge6\)
Ta có:
\(A\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2\left(x+y+z\right)+12}\)
\(\ge\frac{\left(x+y+z\right)^2}{\frac{\left(x+y+z\right)^2}{3}+2\left(x+y+z\right)+12}=\frac{a^2}{\frac{a^2}{3}+2a+12}=\frac{3a^2}{a^2+6a+36}\)
Ta chứng minh:
\(\frac{3a^2}{a^2+6a+36}\ge1\)
\(\Leftrightarrow\left(a-6\right)\left(a+3\right)\ge0\)(đúng)
Vậy ta có ĐPCM
23 tháng 4 2017
Bạn CM x=y=z=1
Sau đó bạn thế số vào và bạn sẽ tính đc phân số là 3/6 rút gọn là 1/2
Cuối cùng bạn sẽ kết luận:
Vì 1/2 ≤ 1/2
Nên ...(biểu thức)...≤1/2