K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2016

Có A=\(\frac{4}{1.4}+\frac{4}{4.7}+\frac{4}{7.10}+.........+\frac{4}{67.70}\)

      A=\(\frac{4}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+............+\frac{3}{67.70}\right)\)

      A=\(\frac{4}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-..........-\frac{1}{70}\right)\)

      A=\(\frac{4}{3}.\left(1-\frac{1}{70}\right)\)

      A=\(\frac{4}{3}.\frac{69}{70}=\frac{46}{35}\)

Vì \(\frac{46}{35}>\frac{9}{7}\) nên A>\(\frac{9}{7}\)

5 tháng 5 2016

\(A=\frac{4}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-....-\frac{1}{70}\right)\)

\(A=\frac{4}{3}.\left(1-\frac{1}{70}\right)=\frac{4}{3}\cdot\frac{69}{70}=\frac{46}{35}>\frac{9}{7}\)

Vậy A >9/7

23 tháng 4 2017

1/3.[1-1/4+1/4-1/7+......+1/67-1/70]

=1/3.[1-1/70]

=1/3.69/70=23/70<1

xong roi k di

23 tháng 4 2017

=(1-1/4)+(1/4-1/7)+....+(1/67-1/70)

=1-1/4+1/4-1/7+......+1/67-1/70

=1-1/70

=69/70

đúng 100%

1 tháng 8 2020

thanks friend!vui

a) Ta có: \(15\frac{3}{13}-\left(3\frac{4}{7}+8\frac{3}{13}\right)\)

\(=15+\frac{3}{13}-3-\frac{4}{7}-8-\frac{3}{13}\)

\(=4-\frac{4}{7}=\frac{24}{7}\)

b) Ta có: \(\left(7\frac{4}{9}+4\frac{7}{11}\right)-3\frac{4}{9}\)

\(=7+\frac{4}{9}+4+\frac{7}{11}-3-\frac{4}{9}\)

\(=8+\frac{7}{11}=\frac{95}{11}\)

c) Ta có: \(\frac{-7}{9}\cdot\frac{4}{11}+\frac{-7}{9}\cdot\frac{7}{11}+5\frac{7}{9}\)

\(=\frac{-7}{9}\cdot\frac{4}{11}+\frac{-7}{9}\cdot\frac{7}{11}+\frac{-7}{9}\cdot\frac{-52}{7}\)

\(=\frac{-7}{9}\cdot\left(\frac{4}{11}+\frac{7}{11}-\frac{52}{7}\right)\)

\(=\frac{-7}{9}\cdot\frac{45}{-7}=5\)

d) Ta có: \(50\%\cdot1\frac{1}{3}\cdot10\cdot\frac{7}{35}\cdot0.75\)

\(=\frac{1}{2}\cdot\frac{4}{3}\cdot10\cdot\frac{7}{35}\cdot\frac{3}{4}\)

\(=5\cdot\frac{7}{35}=1\)

e) Ta có: \(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{40\cdot43}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}\)

\(=1-\frac{1}{43}=\frac{43}{43}-\frac{1}{43}\)

\(=\frac{42}{43}\)

5 tháng 4 2016

4/1.4+4/4.7+4/7.10+4/10.13

= 4/3(3/1.4+3/4.7+3/7.10+3/10.13)

=4/3(1/1-1/4+1/4-1/7+1/7-1/10+1/10-1/13)

=4/3(1/1-1/13)

=4/3.12/13

=16/13

24 tháng 4 2019

\(A=\frac{9}{1.4}+\frac{9}{4.7}+...+\frac{9}{53.56}\)

\(\Rightarrow\frac{1}{3}A=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{53.56}\)

\(\Rightarrow\frac{1}{3}A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{53}-\frac{1}{56}\)

\(\Rightarrow\frac{1}{3}A=1-\frac{1}{56}\)

\(\Rightarrow\frac{1}{3}A=\frac{55}{56}\)

\(\Rightarrow A=\frac{55}{56}\times3\)

\(\Rightarrow A=\frac{165}{56}\)

10 tháng 1 2018

lick nhật linh là gif

9 tháng 11 2018

a) \(\frac{5.4^{15}.9^9-4.3^{20}.8^9}{5.2^9.6^{19}-7.2^{29}.27^6}\)

\(=\frac{5.2^{30}.3^{18}-2^2.2^{27}.3^{20}}{5.2^9.2^{19}.3^{19}-7.2^{29}.3^{18}}\)

\(=\frac{2^{29}.3^{18}\left(5.2-3^2\right)}{2^{18}.3^{18}\left(5.3-7.2\right)}\)

\(=\frac{2.1}{1}=2\)

3 tháng 3 2017

\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+......+\frac{3}{43.46}\)

    \(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{43}-\frac{1}{46}\)

      \(=1-\frac{1}{46}< 1\)

Vậy \(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+......+\frac{3}{43.46}< 1\)

24 tháng 3 2019

a, \(\frac{9}{1.2}+\frac{9}{2.3}+...+\frac{9}{99.100}\)

=9.(\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\))

= 9(1 -\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\))

=9(1-\(\frac{1}{100}\))

A=\(\frac{891}{100}\)

b, \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{27.30}\)

=1-(\(\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{27}-\frac{1}{30}\))

=1-\(\frac{1}{30}\)

B=\(\frac{29}{30}\)

24 tháng 3 2019

a) \(\dfrac{9}{1.2}+\dfrac{9}{2.3}+...+\dfrac{9}{99.100}\)

\(=9\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\right)\)

\(=9\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(=9\left(1-\dfrac{1}{100}\right)\)

\(=9.\dfrac{99}{100}\)

\(=\dfrac{891}{100}\)

b) \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{27.30}\)

\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{27}-\dfrac{1}{30}\)

\(=1-\dfrac{1}{30}\)

\(=\dfrac{29}{30}\)

3 tháng 5 2019

\(B=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)

\(B=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(B=\frac{1}{3}.\left(1-\frac{1}{103}\right)\)

\(B=\frac{1}{3}.\frac{102}{103}\)

\(B=\frac{34}{103}\)

3 tháng 5 2019

Bài 3: đổi ra phân số rồi tính, đổi:\(1,5=\frac{15}{10};2,5=\frac{25}{10};1\frac{3}{4}=\frac{7}{12}\)(cái này ko giải dùm, đổi ra như thek rồi tính nha)

\(B=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{100.103}\)

\(=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}\right)\)

\(=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(=\frac{1}{3}.\left(1-\frac{1}{103}\right)\)

\(=\frac{1}{3}.\frac{102}{103}\)

\(=\frac{1}{1}.\frac{34}{103}=\frac{34}{103}\)