K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2020

a) A = \(\frac{3x+1}{x-1}\)

A là phân số <=> x - 1 \(\ne\)0 <=> x \(\ne\)1

b) A là số nguyên âm 

TH1: x - 1 > 0 => x > 1 => 3x + 1 > 0 

=> A là số nguyên dương => loại 

TH2: x - 1 < 0 => x < 1  mà x nguyên dương nên 

 x = 0 => 3x + 1 = 1 > 0 => A < 0 => Thỏa mãn

Vậy x = 0 thỏa mãn 

c) A nhận giá trị nguyên dương lớn nhất 

Ta có: \(A=\frac{3x+1}{x-1}=\frac{3x-3+4}{x-1}=3+\frac{4}{x-1}\)

A nguyên dương lớn nhất <=> \(\frac{4}{x-1}\) nguyên dương lớn nhất 

<=> \(x-1>0;x-1\inƯ\left(4\right);x-1\)bé nhất 

=> x - 1 = 1

=> x = 2  thỏa mãn

khi đó A = 7 thỏa mãn

Vậy x = 2 thì A lớn nhất bằng 7

17 tháng 4 2020

a) để A là phân số  thì x+1 khác không hay x khác -1, x thuộc Z

b) để A không là phân số suy ra x=1

c) nếu x=-5 thì A=\(\frac{-9}{-4}\)

d)để A là số nguyên thì 2X+1 chia hết x+1 suy ra 1 chia hết x+1 suy ra x=0:-2

e)để A đạt GTLN thf x+1 phải nguyên dương và bé nhất =1 vậy để A  đạt GTLN thì x=0

4 tháng 7 2019

a) Ta có:

Để A là phân số <=> n + 4 \(\ne\)0 <=> n \(\ne\)-4

b) Với : + )n = 1 => \(A=\frac{1+5}{1+4}=\frac{6}{5}\)

+) n = -1 => \(A=\frac{-1+5}{-1+4}=\frac{4}{3}\)

c) Ta có: \(A=\frac{n+5}{n+4}=\frac{\left(n+4\right)+1}{n+4}=1+\frac{1}{n+4}\)

Để A \(\in\)Z <=> 1 \(⋮\)n + 4

      <=> n + 4 \(\in\)Ư(1) = {1; -1}

Lập bảng :

n + 41 -1
   n-3 -5

Vậy ....

4 tháng 7 2019

1a) Để A là phân số thì n \(\ne\)- 4 ; n 

b) + Khi n = 1 

=> \(A=\frac{n+5}{n+4}=\frac{1+5}{1+4}=\frac{6}{5}\)

+ Khi n = -1 

=> \(A=\frac{n+5}{n+4}=\frac{-1+5}{-1+4}=\frac{4}{3}\)

 c) Để \(A\inℤ\)

=> \(n+5⋮n+4\)

=> \(n+4+1⋮n+4\)

Ta có : Vì \(n+4⋮n+4\)

=> \(1⋮n+4\)

=> \(n+4\inƯ\left(1\right)\)

=> \(n+4\in\left\{\pm1\right\}\)

Lập bảng xét các trường hợp

\(n+4\)\(1\)\(-1\)
\(n\)\(-3\)\(-5\)

Vậy \(A\inℤ\Leftrightarrow n\in\left\{-3;-5\right\}\)

16 tháng 5 2020

a)để A là phân số => x khác 1/2

b) Để A\(\in\)

=> \(2x+5⋮2x-1\)

ta có : 2x-1\(⋮\)2x-1

=>(2x+5)-(2x-1)\(⋮\)2x-1

=>6\(⋮\)2x-1

=> 2x-1\(\in\)Ư(6)={\(\pm\)1;\(\pm\)2;\(\pm\)3;\(\pm\)6}

ta có bảng :

2x-11-12-23-36-6
x10\(\frac{3}{2}\)\(\frac{-1}{2}\)2-1\(\frac{7}{2}\)\(-\frac{5}{2}\)

Mà A \(\in\)Z

Vậy x\(\in\){\(\pm\)1;0;2}

c) ta có :A= \(\frac{2x-5}{2x-1}=\frac{2x-1-4}{2x-1}=\frac{2x-1}{2x-1}-\frac{4}{2x-1}=1-\frac{4}{2x-1}\)

để A lớn nhất

=>\(1-\frac{4}{2x-1}\)lớn nhất

=> 2x-1<0 và 2x-1 lớn nhất

=> 2x-1=-1

=>2x=0

=>x=0

Vậy tại x =0 thì A đạt giá trị lớn nhất

12 tháng 4 2021

a)để A là phân số => x khác 1/2

b) Để A∈∈

=> 2x+5⋮2x−12x+5⋮2x−1

ta có : 2x-1⋮⋮2x-1

=>(2x+5)-(2x-1)⋮⋮2x-1

=>6⋮⋮2x-1

=> 2x-1∈∈Ư(6)={±±1;±±2;±±3;±±6}

ta có bảng :

2x-11-12-23-36-6
x103232−12−122-17272−52−52

Mà A ∈∈Z

Vậy x∈∈{±±1;0;2}

c) ta có :A= 2x−52x−1=2x−1−42x−1=2x−12x−1−42x−1=1−42x−12x−52x−1=2x−1−42x−1=2x−12x−1−42x−1=1−42x−1

để A lớn nhất

=>1−42x−11−42x−1lớn nhất

=> 2x-1<0 và 2x-1 lớn nhất

=> 2x-1=-1

=>2x=0

=>x=0

Vậy tại x =0 thì A đạt giá trị lớn nhất

13 tháng 2 2016

a, x khác 5

b, x=1

AH
Akai Haruma
Giáo viên
2 tháng 2 2023

Lời giải:
a. Để $B$ là phân số thì $x+3\neq 0\Leftrightarrow x\neq -3$
b. Để $B$ nhận giá trị nguyên thì $x+3$ là ước của $7$

$\Rightarrow x+3\in\left\{1;-1;7;-7\right\}$

$\Rightarrow x\in\left\{-2; -4; 4; -10\right\}$

c. Để $B< 0$ thì $7$ và $x+3$ trái dấu nhau. Mà $7>0$ nên $x+3<0$

$\Leftrightarrow x<-3$

d. Để $B$ đạt giá trị lớn nhất thì $x+3$ là số dương nhỏ nhất.

Với $x$ nguyên, $x+3$ dương nhỏ nhất bằng $1$

Khi đó: $B_{\max}=\frac{7}{1}=7$. Giá trị này đạt tại $x+3=1$ hay $x=-2$