Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có:A:B=\(\left(\frac{1}{4}.\frac{3}{6}.\frac{5}{8}....\frac{43}{46}.\frac{45}{48}\right):\left(\frac{2}{5}.\frac{4}{7}.\frac{6}{9}....\frac{44}{47}.\frac{46}{49}\right)=\frac{\left(1.3.5...45\right).\left(2.4.6...46\right)}{\left(4.6.8...48\right)\left(5.7.9...49\right)}=\frac{3.2}{47.48.49}<1\)
=>A<B
b)Do A có tử nhỏ hơn mẫu nên A<1<133
Vậy A<133
=1−12 +13 −14 +15 −16 +...+149 −150. A =(1+13 +15 +...+149 )−(12 +14 +16 +...+150 ).
A =(1+12 +13 +14 +15 +16 +...+149 ...
.........
\(A=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)
TA có :\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{50^2}< \frac{1}{49.50}\)
=>\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}\)
=>\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1\Rightarrow1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1+1=2\)
\(A=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)< \frac{1}{2^2}.2=\frac{1}{2}\left(đpcm\right)\)
Ta đặt B=\(\frac{2}{3}.\frac{4}{5}...\frac{80}{81}\)
Mà \(\frac{1}{2}<\frac{2}{3};\frac{3}{4}<\frac{4}{5};...;\frac{79}{80}<\frac{80}{81}\)
=>A<B
=>A2<AB=\(\frac{1}{2}.\frac{2}{3}.....\frac{80}{81}=\frac{1}{81}\)
=>A2<\(\frac{1}{81}\)
=>A<\(\sqrt{\frac{1}{81}}=\frac{1}{9}\)(đpcm)