K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2018

\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{2005.2006}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{2005}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)

\(=\left(1+\frac{1}{2}+...+\frac{1}{2006}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)

\(=\left(1+\frac{1}{2}+...+\frac{1}{2006}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1003}\right)\)

\(=\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}\)(1)

\(B=\frac{1}{1004.2006}+\frac{1}{1005.2005}+....+\frac{1}{2006.1004}\)

\(\Rightarrow\frac{1}{1004}+\frac{1}{2006}+\frac{1}{1005}+\frac{1}{2005}+...+\frac{1}{2006}+\frac{1}{1004}=2\left(\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}\right)\)

\(=\frac{\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}}{1505}\)(2)

Thế (1) và (2) vào ta có:

\(\frac{A}{B}=\frac{\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}}{\frac{\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}}{1505}}\)

2 tháng 7 2016

A=2005/2006

2 tháng 7 2016

A=112+1314+...+1200512006=(1+12+...+12006)(1+12+..+11003)=11004+11005+...+12006A=1−12+13−14+...+12005−12006=(1+12+...+12006)−(1+12+..+11003)=11004+11005+...+12006

Lại có  13010.B=11004+12006+11005+12005+...+11004=11505(11004+11005+...+12006)13010.B=11004+12006+11005+12005+...+11004=11505(11004+11005+...+12006)

Suy ra A/B = 1505

Tham khảo nha 

2 tháng 7 2016

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2005.2006}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2005}-\frac{1}{2006}\)

\(=1-\frac{1}{2006}\)

\(=\frac{2005}{2006}\)

5 tháng 7 2015

\(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2003.2004}+\frac{1}{2005.2006}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\)\(=\left(1+\frac{1}{3}+...+\frac{1}{2005}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)

\(=\left(1+\frac{1}{2}+...+\frac{1}{2006}\right)-2\cdot\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)\(=\left(1+\frac{1}{2}+...+\frac{1}{2006}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1003}\right)=\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}\)

\(B=\frac{1}{1004.2006}+\frac{1}{1005.2005}+\frac{1}{1006.2004}+...+\frac{1}{2006.1004}\)

=>3010B=\(\frac{1}{1004}+\frac{1}{2006}+\frac{1}{1005}+\frac{1}{2005}+...+\frac{1}{2006}+\frac{1}{1004}=2\cdot\left(\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}\right)\)

=>B=\(\frac{\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}}{1505}\)

=>\(\frac{A}{B}=\frac{\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}}{\frac{\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}}{1505}}=1505\)

21 tháng 8 2016

Kết quả là \(1505\)

K nha!

8 tháng 7 2015

nguyentuantai 1 phút trước (09:28)

lí do 1 quá dài

li do 2 ko thấy đề

13 tháng 6 2016

ko pit làm