Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P\left(x\right)=\sqrt[3]{\sqrt{x+8}.\left[x^3\left(x+8\right)+12x\right]+6x^2\left(x+8\right)+8}\)
Đặt: \(\sqrt{x+8}=a>0\) => \(x+8=a^2\)
Khi đó ta có:
\(P\left(x\right)=\sqrt[3]{a\left(x^3a^2+12x\right)+6x^2a^2+8}\)
\(=\sqrt[3]{x^3a^3+12xa+6x^2a^2+2}\)
\(=\sqrt[3]{\left(ax+2\right)^3}\)
\(=ax+2\)
\(=x\sqrt{x+8}+2\)
b: \(=\dfrac{\left|x\right|+\left|x-2\right|+1}{2x-1}=\dfrac{x+x-2+1}{2x-1}=\dfrac{2x-1}{2x-1}=1\)
c: \(=\left|x-4\right|+\left|x-6\right|\)
=x-4+6-x=2
\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\) ( SỬA ĐỀ)
\(\sqrt{x-1-2.2.\sqrt{x-1}+4}+\sqrt{x-1-2.3.\sqrt{x-1}+9}=1\)
\(|x-1-2|+|x-1-3|=1\)
\(|x-3|+|x-4|=1\)
Với \(x\le3\)thì PT thành \(3-x+4-x=1\) \(\Rightarrow-2x=-6\Rightarrow x=3\)(thõa mãn)
Với \(3\le x< 4\)thì PT thành \(x-3+4-x=1\Leftrightarrow0x=0\Rightarrow\)Đúng với mọi x từ \(3\le x< 4\)
Với \(x\ge4\)thì PT thành \(x-3+x-4=1\Leftrightarrow2x=8\Leftrightarrow x=4\)(thõa mãn)
Vậy \(3\le x\le4\)
1) ĐK: \(x\ge0\)
PT \(\Leftrightarrow\frac{2}{3}\sqrt{12x}+\sqrt{12x}-\frac{1}{3}\sqrt{3x}=9\)
\(\Leftrightarrow\frac{5}{3}\sqrt{12x}-\frac{1}{3}\sqrt{3x}=9\)
\(\Leftrightarrow3\sqrt{3x}=9\) \(\Leftrightarrow x=3\left(TM\right)\)
Vậy \(x=3\)
2) ĐK: \(x\ge0\)
PT \(\Leftrightarrow7\sqrt{2x}=14\) \(\Leftrightarrow x=2\left(TM\right)\)
Vậy \(x=2\)
\(A=x-4-2\sqrt{x-4}+1+6=\left(\sqrt{x-4}-1\right)^2+6\ge6\)
dấu \(=\)xảy ra khi \(\sqrt{x-4}=1\Leftrightarrow x=5\)
\(B=\sqrt{3\left(x-2\right)^2+4}+\sqrt{\left(x^2-4\right)^2+1}\ge\sqrt{4}+\sqrt{1}=3\)
Dấu \(=\)xảy ra khi \(x=2\)
1) chả biết nên làm thế nào nữa, đinh chỉ xét dấu thôi là xong, nhưng đang ám ảnh bài giống giống này bị sai
2) Tìm đkxđ --> bình phương 2 vế --> bấm máy tính giải pt bậc 2 --> kl
3) giống câu 2
4) + ĐK: \(x^2-8x+16\ge0\)
pt đã cho \(\Leftrightarrow\left[{}\begin{matrix}\left|x-4\right|+\left|x+2\right|=0\\\left|4-x\right|+\left|x+2\right|=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\end{matrix}\right.\) (vô lý)
Kl: ptvn
a.\(\sqrt{x-2}=\sqrt{4-x}\)
đk: \(\left\{{}\begin{matrix}x-2\ge0\\4-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\le4\end{matrix}\right.\Leftrightarrow2\le x\le4\)
pt đã cho tương đương với
\(x-2=4-x\)
\(\Leftrightarrow2x=6\Rightarrow x=3\left(TM\right)\)
b.\(\sqrt{x^2-8x+6}=x+2\)
đk: \(x+2\ge0\Rightarrow x\ge-2\)
pt đã cho tương đương với
\(x^2-8x+6=\left(x+2\right)^2\)
\(\Leftrightarrow x^2-8x+6=x^2+4x+4\)
\(\Leftrightarrow-12x=-2\Rightarrow x=\frac{1}{6}\left(TM\right)\)
c.\(\sqrt{2x-1}+5=\sqrt{8x-4}\)
\(\Leftrightarrow\sqrt{2x-1}+5=\sqrt{4\left(2x-1\right)}\)
\(\Leftrightarrow\sqrt{2x-1}+5=2\sqrt{2x-1}\)
\(\Leftrightarrow\sqrt{2x-1}=5\)
đk: \(2x-1\ge0\Leftrightarrow x\ge\frac{1}{2}\)
pt tương đương: \(2x-1=25\)
\(\Leftrightarrow2x=26\Rightarrow x=13\left(TM\right)\)
d.\(\sqrt{16-32x}-\sqrt{12x}=\sqrt{3x}+\sqrt{9-18x}\)
\(\Leftrightarrow\sqrt{16\left(1-2x\right)}-\sqrt{4.3x}=\sqrt{3x}+\sqrt{9\left(1-2x\right)}\)
\(\Leftrightarrow4\sqrt{1-2x}-2\sqrt{3x}+3\sqrt{1-2x}\)
\(\Leftrightarrow\sqrt{1-2x}=3\sqrt{3x}\)
đk: \(\left\{{}\begin{matrix}1-2x\ge0\\3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le\frac{1}{2}\\x\ge0\end{matrix}\right.\Leftrightarrow0\le x\le\frac{1}{2}\)
pt tương đương: \(1-2x=9.3x\)
\(\Leftrightarrow29x=1\Rightarrow x=\frac{1}{29}\left(TM\right)\)
e. \(\sqrt{x^2-9}-\sqrt{4x-12}=0\)
đk: \(\left\{{}\begin{matrix}\left(x-3\right)\left(x+3\right)\ge0\\4x-12\ge0\end{matrix}\right.\Leftrightarrow x\ge3\)
pt đã cho tương đương với
\(\sqrt{\left(x-3\right)\left(x+3\right)}-\sqrt{4\left(x-3\right)}=0\)
\(\Leftrightarrow\sqrt{x-3}.\sqrt{x+3}-2\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x-3}.\left(\sqrt{x+3}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\Rightarrow x=3\left(TM\right)\\\sqrt{x+3}=2\Leftrightarrow x+3=4\Rightarrow x=1\left(KTM\right)\end{matrix}\right.\)