Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐểA\in Z\)thì:
\(n+2⋮n-5\)
=> \(\left[n-5\right]+7⋮n-5\)
=> 7 chia hết cho n - 5
=> n -5 E Ư[7] E {-7;-1;1;7}
=> n E {-2;4;6;12}
Vậy: n = -2; n = 4 n = 6; n = 12
\(A=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=1+\frac{7}{n-5}\)
Để \(A\in Z\)thì n-5 là ước nguyên của 7
\(n-5=1\Rightarrow n=6\)
\(n-5=7\Rightarrow n=12\)
\(n-5=-1\Rightarrow n=4\)
\(n-5=-7\Rightarrow n=-2\)
Ai thấy đúng k cho mink nha !!!
Ta có:
\(A=\frac{n+2}{n+5}=\frac{n+5-3}{n+5}=1-\frac{3}{n+5}\)
Để \(A\in Z\)thì \(\frac{3}{n+5}\in Z\)
\(\Leftrightarrow3⋮\left(n+5\right)\)
\(\Rightarrow n+5\inư\left(3\right)\)
\(\Rightarrow n+5\in\left\{1;-1;3;-3\right\}\)
Lập bảng :
n+5 | 1 | -1 | 3 | -3 |
n | -4 | -6 | -2 | -8 |
Vậy \(x\in\left\{-4;-6;-2;-8\right\}\)
\(\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=\frac{n-5}{n-5}+\frac{7}{n-5}=1+\frac{7}{n-5}\)
Để A thuộc Z thì 7 chia hết cho n-5
\(n-5\inƯ\left(7\right)=\left\{-1;-7;1;7\right\}\)
n-5 | -1 | -7 | 1 | 7 |
n | -6 | -12 | -4 | 2 |
1) Gọi \(d=ƯCLN\left(2n+1;3n+2\right)\)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}\)
\(\Rightarrow2\left(3n+2\right)-3\left(2n+1\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow2n+1\)và\(3n+2\)là nguyên tố cùng nhau
\(\Rightarrow\frac{2n+1}{3n+2}\)là phân số tối giản\(\left(đpcm\right)\)
câu 1 :
gọi d = ƯCLN ( 2n + 1; 3n +2 )
=> 2n + 1 chia hết cho d => 3 ( 2n +1 ) chia hết cho d
3n + 2 chia hết cho d => 2 ( 3n + 2 ) chia hết cho d
ta có : 3 ( 3n + 2 ) - [ 2 ( 2n + 21) ] hay 6n + 4 - [ 6n + 3 ] chia hết cho d
=> 1 chia hết cho d -> 2n +1 và 3n + 2 là hai số nguyên tố cùng nhau
=> \(\frac{2n+1}{3n+2}\) là phân số tối giản
1.Cho A=\(\dfrac{n+1}{n-2}\)
a)Tìm n ∈ Z để A là phân số
Để A là phân số thì n+1;n-2 ∈ Z ; n-2 khác 0
<=> n ∈ Z; n >2
Vậy A là phân số <=> n ∈ Z; n>2
b)Tìm n∈Z để A∈Z
A ∈ Z <=> n+1 chia hết cho n-2
<=>n-2+3 chia hết cho n-2
<=>3 chia hết cho n-2 ( vì n-2 chia hết cho n-2)
<=>n-2 ∈ Ư(3)={1;-1;3;-3}
<=>n ∈ {3;1;5;-1}
Vậy để A ∈ Z thì n ∈ {3;1;5;-1}
c)Tìm N∈Z để A lớn nhất
2.Cho B=\(\dfrac{3n+2}{4n+3}\)
Chứng minh B tối giản
1c) Tìm n∈Z để A lớn nhất:
Ta có A=\(\dfrac{n+1}{n-2}\)=\(\dfrac{n-2+3}{n-2}\)=\(\dfrac{n-2}{n-2}\)+\(\dfrac{3}{n-2}\)=1+\(\dfrac{3}{n-2}\)
=> A lớn nhất <=> \(\dfrac{3}{n-2}\) lớn nhất
<=>n-2 nhỏ nhất; n-2>0; n-2∈Z
<=>n-2=1
<=>n=3
Vậy A lớn nhất <=> n-3
Bài 1
2.|x+1|-3=5
2.|x+1| =8
|x+1| =4
=>x+1=4 hoặc x+1=-4
<=>x= 3 hoặc -5
Bài 3
A=2/n-1
Để A có giá trị nguyên thì n là
2 phải chia hết cho n-1
U(2)={1,2,-1,-2}
Vậy A là số nguyên khi n=2;3;0;-1
k mk nha. Chúc bạn học giỏi
Thank you
bài 1 :
\(2\cdot|x+1|-3=5\)
\(2\cdot|x+1|=5+3\)
\(2\cdot|x+1|=8\)
\(|x+1|=8\div2\)
\(|x+1|=4\)
\(x=4-3\)
\(x=3\Rightarrow|x|=3\)
bài 2 : có 2 trường hợp để \(n\in Z\)là \(A=2\)và \(A=4\)
TH1:
\(2=\frac{n+1}{n-2}\Rightarrow2=\frac{6}{3}\left(n\in Z\right)\)
\(2=\frac{n+1}{n-2}\Rightarrow2=\frac{6-1}{3+2}=5\)
\(\Rightarrow n=5\)
TH2
\(4=\frac{n+1}{n-2}\Rightarrow4=\frac{4}{1}\left(n\in Z\right)\)
\(\Rightarrow4=\frac{4-1}{1+2}=3\)
\(\Rightarrow n=3\)
\(n\in\left\{5;3\right\}\left(n\in Z\right)\)
Bài 3 có 2 trường hợp là \(A=1\)và \(A=2\)
TH1:
\(1=\frac{2}{n-1}\Rightarrow1=\frac{2}{2}\)
\(1=\frac{2}{2+1}=3\)
\(\Rightarrow n=3\)
TH2 :
\(2=\frac{2}{n-1}\Rightarrow2=\frac{2}{1}\)
\(2=\frac{2}{1+1}=2\)
\(\Rightarrow n=2\)
vậy \(\Rightarrow n\in\left\{3;2\right\}\)
n+2 chia hết n-5
n-5 + 7 chia hết n-5
=> n-5 \(\in\) Ư(7)
=> Ư(7)={-1;1;-7;7}
Ta có:
n-5 | -1 | 1 | -7 | 7 |
n | 4 | 6 | -2 | 12 |
\(A=\dfrac{n+2}{n-1}\)
Để A có giá trị là phân số thì:\(n-1\ne0\Rightarrow n\ne1;n\in Z\)
Để A có giá trị là số nguyên thì:
\(n+2⋮n-1\)
\(n-1+3⋮n-1\)
\(n-1⋮n-1\Rightarrow3⋮n-1\)
\(\Rightarrow n-1\in U\left(3\right)\)
\(U\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}n-1=1\Rightarrow n=2\\n-1=-1\Rightarrow n=0\\n-1=3\Rightarrow n=4\\n-1=-3\Rightarrow n=-2\end{matrix}\right.\)
+Để A có GTNN:
\(MIN_A\Rightarrow A\in Z^-\)
\(\Rightarrow n-1\in Z^-\)
\(MIN_A\Rightarrow MAX_{n-1}\)
\(\Rightarrow n-1=-1\Rightarrow n=0\)
\(\Rightarrow MIN_A=\dfrac{0+2}{0-1}=-2\)
+ Để A có GTLN:
\(MAX_A\Rightarrow A\in Z^+\)
\(\Rightarrow n-1\in Z^+\)
\(MAX_A\Rightarrow MIN_{n-1}\)
\(\Rightarrow n-1=1\Rightarrow n=2\)
\(\Rightarrow MAX_A=\dfrac{2+2}{2-1}=4\)
a, Gỉa sử phân số\(\dfrac{2n+5}{3n+7}\) chưa tối giản
Khi đó gọi d là một ước nguyên tố của 2n+5 và 3n+7
Ta có: 2n+5\(⋮\) d; 3n+7\(⋮\) d
\(\Rightarrow\)3(2n+5)-2(3n+7) \(⋮\) d
\(\Rightarrow\)6n+15- 6n- 14\(⋮\)d
\(\Rightarrow\)1\(⋮\) d
Mà d là số nguyên tố\(\Rightarrow\)d \(\in\)\(\varnothing\)
Vậy phân số \(\dfrac{2n+5}{3n+7}\) tối giản với mọi n\(\in\)Z
b, Để Q\(\in\)Z\(\Rightarrow\) 2n+5\(⋮\) 3n+7
\(\Rightarrow\)6n+15\(⋮\) 3n+7
\(\Rightarrow\)6n+ 14 + 1\(⋮\)3n+7
\(\Rightarrow\)2.(3n+7)+1\(⋮\)3n+7
\(\Rightarrow\)1:3n+7\(\Rightarrow\)3n+7\(\in\)Ư(1)={\(\pm\)}
+, Với 3n+7=-1
\(\Rightarrow\)3n=(-1)-7
\(\Rightarrow\)2n=-8
\(\Rightarrow\)n=-8.3\(\notin\)Z
\(\Rightarrow\)Để Q \(\in\) Z thì n=-2
Chúc bạn học tốt
Để Q là số nguyên thì
\(2n+5⋮3n+7\)
\(\Rightarrow3\left(2n+5\right)=6n+15=2\left(3n+7\right)+1⋮3n+7\)
Vì \(2\left(3n+7\right)⋮3n+7\)
\(\Rightarrow1⋮3n+7\)
3n+7=1=>n=-2
3n+7=-1=>n=/
Vậy số nguyên để Q là số nguyên là -2
ĐỀ SAI: CHỈNH x THÀNH n nhé:
\(A=\dfrac{n+2}{n-5}=\dfrac{n-5+7}{n-5}=1+\dfrac{7}{n-5}\)
Để A nguyên thì \(\dfrac{n+2}{n-5}\)phải nguyên <=> \(\dfrac{7}{n-5}\)nguyên <=> 7 chia hết cho n-5 hay n-5 là Ư(7)
Mà Ư(7)={-7;-1;1;7}
Ta có bảng sau:
Vậy n={-2;4;6;12} thì A nguyên
Để \(A\in Z\) thì \(n+2⋮n-5\)
\(\Rightarrow\left(n-5\right)+7⋮n-5\)
mà \(n-5⋮n-5\)
\(\Rightarrow7⋮n-5\)
\(\Rightarrow n-5\inƯ\left(7\right)\)
\(\Rightarrow n-5\in\left\{\pm1;\pm7\right\}\)
\(\Rightarrow n\in\left\{6;4;12;-2\right\}\)
Vậy \(n\in\left\{6;4;-2;12\right\}\) thì A \(\in Z.\)