\(\dfrac{a^{2018}-b^{2018}}{a^{2018}+b^{2018}}\) và B=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 11 2018

Giải trâu:

Xét \(A-B=\dfrac{a^{2018}-b^{2018}}{a^{2018}+b^{2018}}-\dfrac{a^{2019}-b^{2019}}{a^{2019}+b^{2019}}\)

\(=\dfrac{\left(a^{2018}-b^{2018}\right)\left(a^{2019}+b^{2019}\right)-\left(a^{2018}+b^{2018}\right)\left(a^{2019}-b^{2019}\right)}{\left(a^{2018}+b^{2018}\right)\left(a^{2019}+b^{2019}\right)}\)

\(=\dfrac{a^{4037}+a^{2018}b^{2019}-a^{2019}b^{2018}-b^{4037}-a^{4037}+a^{2018}b^{2019}-a^{2019}b^{2018}+b^{4037}}{\left(a^{2018}+b^{2018}\right)\left(a^{2019}+b^{2019}\right)}\)

\(=\dfrac{2a^{2018}b^{2019}-2a^{2019}b^{2018}}{\left(a^{2018}+b^{2018}\right)\left(a^{2019}+b^{2019}\right)}=\dfrac{2a^{2018}b^{2018}\left(b-a\right)}{\left(a^{2018}+b^{2018}\right)\left(a^{2019}+b^{2019}\right)}\)

\(\Rightarrow\)Nếu \(a>b\Rightarrow b-a< 0\Rightarrow A-B< 0\Rightarrow A< B\)

Nếu \(a< b\Rightarrow b-a>0\Rightarrow A-B>0\Rightarrow A>B\)

4 tháng 11 2018

Cứu mình với 9:00 sáng nay mình nộp bài rùikhocroi

17 tháng 8 2021

bạn ơi bạn có câu trả lời chưa, cho mik xin vs

 

a: \(=\dfrac{3}{2}\left(-21-\dfrac{1}{3}+1+\dfrac{1}{3}\right)=\dfrac{3}{2}\cdot\left(-20\right)=-30\)

b: \(=\dfrac{2018}{2019}\left(13-13-\dfrac{2018}{2019}-\dfrac{1}{2019}\right)=-\dfrac{2018}{2019}\)

12 tháng 7 2018

Bạn tìm ở trên google nha

12 tháng 7 2018

\(\frac{a+2018}{a-2018}=\frac{b+2019}{b-2019}\)

=>(a+2018)(b-2019)=(a-2018)(b+2019)

=>ab-2019a+2018b-2018.2019=ab+2019a-2018b-2018.2019

=>2019a+2019a=2018b+2018b

=>4038a=4036b

=>2019a=2018b

=>\(\frac{a}{2018}=\frac{b}{2019}\) (đpcm)

AH
Akai Haruma
Giáo viên
27 tháng 10 2018

Lời giải:

Ta có:

\(2018^{2018}(2019^{2019}+2019)=2018^{2018}.2019^{2019}+2018^{2018}.2019<2018^{2018}.2019^{2019}+2019^{2018}.2019 \)

\(< 2018^{2018}.2019^{2019}+2019^{2019}.2018\)

\(\Leftrightarrow 2018^{2018}(2019^{2019}+2019)< 2019^{2019}(2018^{2018}+2018)\)

\(\Rightarrow \frac{2018^{2018}}{2019^{2019}}< \frac{2018^{2018}+2018}{2019^{2019}+2019}\)

29 tháng 10 2018

hây hây

7 tháng 8 2019

\(A=\frac{7^{2018}+1}{7^{2019}+1}\)

\(\Rightarrow7A=\frac{7^{2019}+7}{7^{2019}+1}=1+\frac{6}{7^{2019}+1}\)

\(B=\frac{7^{2019}+1}{7^{2020}+1}\)

\(\Rightarrow7B=\frac{7^{2020}+7}{7^{2020}+1}\)

\(\Rightarrow7B=1+\frac{6}{7^{2020}+1}\)

Vì 7 ^ 2019 < 7 ^ 2020 => 7 ^ 2019 + 1 < 7 ^ 2020 + 1

=> 6 / ( 7 ^ 2019 + 1 ) > 6 / ( 7 ^ 2020 + 1 )  

=> 1 + 6 / ( 7 ^ 2019 + 1 ) > 1 + 6 / ( 7 ^ 2020 + 1 )  

=> 7A > 7B

Vì A , B > 0 

Nên A > B 

7 tháng 8 2019

Vì \(7^{2018}< 7^{2019}\)nên \(7^{2018}+1< 7^{2019}+1\)

\(\Rightarrow\frac{7^{2018}+1}{7^{2019}+1}< \frac{7^{2019}+1}{7^{2019}+1}\)

Hay A < B

Chúc bạn học tốt ! Nguyễn Thi An Na

28 tháng 12 2018

Có \(a\left(b+1\right)< b\left(a+1\right)\Leftrightarrow ab+a< ab+b\)

\(\Rightarrow\frac{a}{b}< \frac{a+1}{b+1}\)

Áp dụng \(\frac{2^{2018}}{3^{2019}}< \frac{2^{2018}+1}{3^{2019}+1}\)

28 tháng 12 2018

Ta có:

\(1-\frac{a}{b}=\frac{b-a}{b}\)

\(1-\frac{a+1}{b+1}=\frac{b+1-a-1}{b+1}=\frac{b-a}{b+1}\)

Vì b < b + 1 và a < b; a, b nguyên dương  => b - a > 0 nên \(\frac{b-a}{b}>\frac{b-a}{b+1}\)

Do đó \(1-\frac{a}{b}>1-\frac{a+1}{b+1}\)

\(\Rightarrow\frac{a}{b}< \frac{a+1}{b+1}\)

Áp dụng chứng minh tương tự nhé bạn