Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{x-1}\)
\(=\dfrac{2x-3\sqrt{x}+1}{x-1}=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)
b: Thay \(x=4-2\sqrt{3}\) vào A, ta được:
\(A=\dfrac{2\left(\sqrt{3}-1\right)-1}{\sqrt{3}-1+1}=\dfrac{2\sqrt{3}-3}{\sqrt{3}}=2-\sqrt{3}\)
c: Để A=1/2 thì \(4\sqrt{x}-2=\sqrt{x}+1\)
=>x=1(loại)
điều kiện xác định : \(x\ge0;x\ne1\)
a) ta có : \(G=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\dfrac{x^2-2x+1}{2}\)
\(\Leftrightarrow G=\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right).\dfrac{\left(x-1\right)^2}{2}\)
\(\Leftrightarrow G=\left(\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\dfrac{\left(x-1\right)^2}{2}\) \(\Leftrightarrow G=\left(\dfrac{-2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\dfrac{\left(x-1\right)^2}{2}=\sqrt{x}-x\)
b) thay \(x=0,16\) vào \(G\) ta có : \(G=\sqrt{0,16}-0,16=0,24\)
c) ta có : \(G=-\left(x-\sqrt{x}+\dfrac{1}{4}\right)-\dfrac{1}{4}=-\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge\dfrac{-1}{4}\)
\(\Rightarrow G_{max}=\dfrac{-1}{4}\) khi \(\sqrt{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\)
d) ta có : \(G=\sqrt{x}-x\) \(\Rightarrow\) để \(G\in Z\) \(\Rightarrow x=a^2\ne1\)
e) ta có : \(G>0\Leftrightarrow\sqrt{x}-x>0\Leftrightarrow\sqrt{x}\left(1-\sqrt{x}\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}>0\\1-\sqrt{x}>0\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}< 0\\1-\sqrt{x}< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}0< x< 1\\x\in\varnothing\end{matrix}\right.\) \(\Rightarrow\left(đpcm\right)\)
f) để \(G< 0\Leftrightarrow\sqrt{x}-x< 0\Leftrightarrow\sqrt{x}\left(1-\sqrt{x}\right)< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}>0\\1-\sqrt{x}< 0\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}< 0\\1-\sqrt{x}>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>1\\x\in\varnothing\end{matrix}\right.\) vậy \(x>1\)
bạn có thể làm chi tiết dòng thứ tư phần rút gọn đc ko ?
Câu 2:
a: ĐKXĐ: x>=0; x<>1
b: \(=\dfrac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(x-1\right)^2}{2}\)
\(=-\dfrac{2\sqrt{x}}{2}\cdot\left(\sqrt{x}-1\right)=-\sqrt{x}\left(\sqrt{x}-1\right)\)
c: Thay x=4/25 vào G, ta được:
\(G=-\dfrac{2}{5}\cdot\left(\dfrac{2}{5}-1\right)=\dfrac{-2}{5}\cdot\dfrac{-3}{5}=\dfrac{6}{25}\)
Bài 1:
A.\(\left(\sqrt{x}+2\right)\) = -1 (ĐK: \(x\ge0\)
\(\Leftrightarrow\dfrac{1}{x-4}\left(\sqrt{x}+2\right)=-1\)
\(\Leftrightarrow\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=-1\)
\(\Leftrightarrow\dfrac{1}{\sqrt{x}-2}=-1\)
\(\Leftrightarrow\sqrt{x}-2=-1\)
\(\Leftrightarrow\sqrt{x}=1\\ \Leftrightarrow x=1\left(TM\right)\)
Vậy x = 1
Bài 2: ĐK: \(x\ge0\)
Để \(B\in Z\Leftrightarrow\dfrac{3}{\sqrt{x}+2}\in Z\Leftrightarrow\sqrt{x}+2\inƯ\left(3\right)\)\(\Leftrightarrow\sqrt{x}+2\in\left\{\pm1,\pm3\right\}\)\(\Leftrightarrow x\in\left\{1\right\}\)
Bài 3:
a, Ta có: \(x+\sqrt{x}+1=x+2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}-\dfrac{1}{4}+1\\ =\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
Ta có: 2 > 0 và \(x+\sqrt{x}+1>0\Rightarrow C>0\) và \(x\ne1\)
b, ĐK: \(x\ge0,x\ne1\)
\(C=\dfrac{2}{x+\sqrt{x}+1}\)
Ta có: \(x+\sqrt{x}+1=\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Ta có: \(\sqrt{x}\ge0\forall x\Rightarrow\sqrt{x}+\dfrac{1}{2}\ge\dfrac{1}{2}\forall x\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{2}\right)^2\ge\dfrac{1}{4}\)
\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge1\Leftrightarrow\dfrac{2}{\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le2\)
Dấu bằng xảy ra \(\Leftrightarrow\sqrt{x}+\dfrac{1}{2}=\dfrac{1}{2}\\ \Leftrightarrow x=0\left(TM\right)\)
Vậy MaxC = 2 khi x = 0
Còn cái GTNN chưa tính ra được, để sau nha
Bài 4: ĐK: \(x\ge0,x\ne1\)
\(D=\left(\dfrac{2x+1}{\sqrt{x^3-1}}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{1+\sqrt{x^3}}{1+\sqrt{x}}-\sqrt{x}\right)\)
\(=\left(\dfrac{2x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{\left(1+\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}{1+\sqrt{x}}-\sqrt{x}\right)\)
\(=\left(\dfrac{2x+1-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\left(x-\sqrt{x}+1-\sqrt{x}\right)\)
\(=\left(\dfrac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\left(x-2\sqrt{x}+1\right)\)
\(=\left(\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\left(\sqrt{x}-1\right)^2\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)}\)
\(=\sqrt{x}-1\)
\(D=3\Leftrightarrow\sqrt{x}-1=3\Leftrightarrow x=2\left(TM\right)\)
\(D=x-3\sqrt{x}+2\)
\(\Leftrightarrow\sqrt{x}-1=\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(1-\sqrt{x}+2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(3-\sqrt{x}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(L\right)\\x=9\left(TM\right)\end{matrix}\right.\)
Bài 5: \(E< -1\Leftrightarrow\dfrac{-3x}{2x+4\sqrt{x}}< -1\)\(\Leftrightarrow\dfrac{-3x}{2x+4\sqrt{x}}+1< 0\Leftrightarrow\dfrac{-3x+2x+4\sqrt{x}}{2x+4\sqrt{x}}< 0\)
\(\Leftrightarrow\dfrac{4\sqrt{x}-x}{2x+4\sqrt{x}}< 0\Leftrightarrow\dfrac{\sqrt{x}\left(4-\sqrt{x}\right)}{2x+4\sqrt{x}}< 0\)
Ta có: \(\sqrt{x}>0\Leftrightarrow x>0\Leftrightarrow2x+4\sqrt{x}>0\) mà \(\dfrac{\sqrt{x}\left(4-\sqrt{x}\right)}{2x+4\sqrt{x}}< 0\)\(\Rightarrow\sqrt{x}\left(4-\sqrt{x}\right)< 0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}< 0\left(L\right)\\4-\sqrt{x}>0\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}>0\\4-\sqrt{x}< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x< 16,x\ne0\\\left\{{}\begin{matrix}x>0\\x< 16\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< 16,x\ne0\\0< x< 16\end{matrix}\right.\)
a) Rut gon H
\(H=\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{a+\sqrt{a}-6}+\dfrac{1}{2-\sqrt{a}}\)
\(H=\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{a+\sqrt{a}-6}-\dfrac{1}{\sqrt{a}-2}\)
DKXD : \(\left\{{}\begin{matrix}\sqrt{a}+3\ne0\\\sqrt{a}-2\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a\ne9\\a\ne4\end{matrix}\right.\)
Ta co : \(H=\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}-\dfrac{5}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}-\dfrac{\sqrt{a}+3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)
\(H=\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)-5-\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)
\(H=\dfrac{a-\sqrt{a}-6}{a+\sqrt{a}-6}\)
ĐKXĐ : x > 0 ; x ≠ 1 ; x ≠ 4
a) \(A=\left(1-\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{1}{\sqrt{x-1}}\right)\div\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\left(\frac{x-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\div\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\left(\frac{x-1-4\sqrt{x}+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\div\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{x-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\times\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}-3}{\sqrt{x}-2}\)
b) Với x = \(11-6\sqrt{2}\)
\(A=\frac{\sqrt{11-6\sqrt{2}}-3}{\sqrt{11-6\sqrt{2}}-2}\)
\(=\frac{\sqrt{2-6\sqrt{2}+9}-3}{\sqrt{2-6\sqrt{2}+9}-2}\)
\(=\frac{\sqrt{\left(\sqrt{2}\right)^2-2\cdot\sqrt{2}\cdot3+3^2}-3}{\sqrt{\left(\sqrt{2}\right)^2-2\cdot\sqrt{2}\cdot3+3^2}-2}\)
\(=\frac{\sqrt{\left(\sqrt{2}-3\right)^2}-3}{\sqrt{\left(\sqrt{2}-3\right)^2}-2}\)
\(=\frac{\left|\sqrt{2}-3\right|-3}{\left|\sqrt{2}-3\right|-2}\)
\(=\frac{3-\sqrt{2}-3}{3-\sqrt{2}-2}=\frac{-\sqrt{2}}{1-\sqrt{2}}\)
c) Ta có : \(A=\frac{\sqrt{x}-3}{\sqrt{x}-2}=\frac{\sqrt{x}-2-1}{\sqrt{x}-2}=1-\frac{1}{\sqrt{x}-2}\)
Để A nguyên => \(\frac{1}{\sqrt{x}-2}\)nguyên
=> \(1⋮\sqrt{x}-2\)
=> \(\sqrt{x}-2\inƯ\left(1\right)=\left\{\pm1\right\}\)
=> \(\sqrt{x}\in\left\{3;1\right\}\)
=> \(x=9\)( không nhận x = 1 do ĐKXĐ )
d) Để A = -2
=> \(\frac{\sqrt{x}-3}{\sqrt{x}-2}=-2\)( x > 0 ; x ≠ 1 ; x ≠ 4 )
=> \(\sqrt{x}-3=-2\sqrt{x}+4\)
=> \(\sqrt{x}+2\sqrt{x}=4+3\)
=> \(3\sqrt{x}=7\)
=> \(9x=49\)( bình phương hai vế )
=> \(x=\frac{49}{9}\)( tm )
e) Để A có giá trị âm
=> \(\frac{\sqrt{x}-3}{\sqrt{x}-2}< 0\)
Xét hai trường hợp :
1.\(\hept{\begin{cases}\sqrt{x}-3>0\\\sqrt{x}-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}>3\\\sqrt{x}< 2\end{cases}}\Leftrightarrow\hept{\begin{cases}x>9\\x< 4\end{cases}}\)( loại )
2. \(\hept{\begin{cases}\sqrt{x}-3< 0\\\sqrt{x}-2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}< 3\\\sqrt{x}>2\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 9\\x>4\end{cases}}\Leftrightarrow4< x< 9\)
Vậy với 4 < x < 9 thì A có giá trị âm
f) Để A < -2
=> \(\frac{\sqrt{x}-3}{\sqrt{x}-2}< -2\)
=> \(\frac{\sqrt{x}-3}{\sqrt{x}-2}+2< 0\)
=> \(\frac{\sqrt{x}-3}{\sqrt{x}-2}+\frac{2\sqrt{x}-4}{\sqrt{x-2}}< 0\)
=> \(\frac{3\sqrt{x}-7}{\sqrt{x}-2}< 0\)
Xét hai trường hợp :
1. \(\hept{\begin{cases}3\sqrt{x}-7< 0\\\sqrt{x}-2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}3\sqrt{x}< 7\\\sqrt{x}>2\end{cases}}\Leftrightarrow\hept{\begin{cases}9x< 49\\x>4\end{cases}}\Leftrightarrow\hept{\begin{cases}x< \frac{49}{9}\\x>4\end{cases}}\Leftrightarrow4< x< \frac{49}{9}\)
2. \(\hept{\begin{cases}3\sqrt{x}-7>0\\\sqrt{x}-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}3\sqrt{x}>7\\\sqrt{x}< 2\end{cases}}\Leftrightarrow\hept{\begin{cases}9x>49\\x< 4\end{cases}}\Leftrightarrow\hept{\begin{cases}x>\frac{49}{9}\\x< 4\end{cases}}\)( loại )
Vậy với 4 < x < 49/9 thì A < -2
g) Để \(A>\sqrt{x}-1\)
=> \(\frac{\sqrt{x}-3}{\sqrt{x}-2}>\sqrt{x}-1\)
=> \(\frac{\sqrt{x}-3}{\sqrt{x}-2}-\left(\sqrt{x}-1\right)>0\)
=> \(\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\sqrt{x}-2}>0\)
=> \(\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{x-3\sqrt{x}+2}{\sqrt{x}-2}>0\)
=> \(\frac{-x+4\sqrt{x}-5}{\sqrt{x}-2}>0\)
Ta có : \(-x+4\sqrt{x}-5=-\left(x-4\sqrt{x}+4\right)-1=-\left(\sqrt{x}-2\right)^2-1\le-1< 0\left(\forall\ge0\right)\)
Nên để A > 0 thì ta chỉ cần xét \(\sqrt{x}-2< 0\)
\(\sqrt{x}-2< 0\Leftrightarrow\sqrt{x}< 2\Leftrightarrow x< 4\)
Kết hợp với ĐKXĐ => \(\hept{\begin{cases}0< x< 4\\x\ne1\end{cases}}\)thì tm
Bài 2:
a: \(A=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-\left(5\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
b: Thay \(x=5-2\sqrt{6}\) vào A, ta được:
\(A=\dfrac{-5\left(\sqrt{3}-\sqrt{2}\right)+2}{\sqrt{3}-\sqrt{2}+3}=\dfrac{-5\sqrt{3}+5\sqrt{2}+2}{\sqrt{3}-\sqrt{2}+3}\simeq0,124\)
d: Để A=1/2 thì \(\sqrt{x}+3=-10\sqrt{x}+4\)
\(\Leftrightarrow11\sqrt{x}=1\)
hay x=1/121
a: Để A<0 thì 2*căn x-4<0
=>căn x<2
=>0<=x<4
=>\(x\in\left\{0;1;2;3\right\}\)
b: \(A-2=\dfrac{2\sqrt{x}-4-2\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{-6}{\sqrt{x}+1}< 0\)
=>A<2
c: A<1
=>A-1<0
=>\(\dfrac{2\sqrt{x}-4-\sqrt{x}-1}{\sqrt{x}+1}< 0\)
=>căn x-5<0
=>0<=x<25
d: A>-1
=>A+1>0
=>\(\dfrac{2\sqrt{x}-4+\sqrt{x}+1}{\sqrt{x}+1}>0\)
=>3*căn x-3>0
=>x>1
e: A<=(-x+6căn x-8)/(căn x+1)
=>2*căn x-4<=-x+6căn x-8
=>x-4căn x+4<=0
=>x=4