Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
so sánh : cho A\(\frac{2010^{2011}+1}{2010^{2012}+1}\)
cho B =\(\frac{2010^{2010}+1}{2010^{2011}+1}\)
Ta có:
\(A=\frac{2010^{2011}+1}{2010^{2012}+1}\)
\(2010A=\frac{2010^{2012}+2010}{2010^{2012}+1}\)
\(2010A=1+\frac{2009}{2010^{2012}+1}\)
Lại có:
\(B=\frac{2010^{2010}+1}{2010^{2011}+1}\)
\(2010B=\frac{2010^{2011}+2010}{2010^{2011}+1}\)
\(2010B=1+\frac{2009}{2010^{2011}+1}\)
Vì \(1+\frac{2009}{2010^{2012}+1}< 1+\frac{2009}{2010^{2011}+1}\)
nên 2010A < 2010B
hay A < B
Vậy A < B
\(1-A=1-\frac{2010^{2011}+1}{2010^{2012}+1}=\frac{2010^{2012}+1}{2010^{2012}+1}-\frac{2010^{2011}+1}{2010^{2012}+1}\)=\(\frac{2010}{2010^{2012}+1}\)
\(1-A=1-\frac{2010^{2011}+1}{2010^{2012}+1}=\frac{2010^{2012}+1}{2010^{2012}+1}-\frac{2010^{2011}+1}{2010^{2012}+1}=\frac{2010}{2010^{2012}+1}\)
\(1-B=1-\frac{2010^{2010}+1}{2010^{2011}+1}=\frac{2010^{2011}+1}{2010^{2011}+1}-\frac{2010^{2010}+1}{2010^{2011}+1}=\frac{2010}{2010^{2011}+1}\)
\(\frac{2010}{2010^{2012}+1}<\frac{2010}{2010^{2011}+1}\Rightarrow A>B\)
\(1-A=1-\frac{2010^{2011}+1}{2010^{2012}+1}=\frac{2010^{2012}+1}{2010^{2012}+1}-\frac{2010^{2011}+1}{2010^{2012}+1}=\frac{2010}{2010^{2012}+1}\)
\(1-B=1-\frac{2010^{2010}+1}{2010^{2011}+1}=\frac{2010^{2011}+1}{2010^{2011}+1}-\frac{2010^{2010}+1}{2010^{2011}+1}=\frac{2010}{2010^{2011}+1}\)
Do \(\frac{2010}{2010^{2012}+1}<\frac{2010}{2010^{2011}+1}\)nên \(A>B\)
Do 20102011+1<20102012+1=>A<1
Tương tự với B;B<1
Theo đề bài ta có:
\(A=\frac{2010^{2011}+1}{2010^{2012}+1}<\frac{2010^{2011}+1+2009}{2010^{2012}+1+2009}=\frac{2010^{2011}+2010}{2010^{2012}+2010}=\frac{2010.\left(1+2010^{2010}\right)}{2010.\left(1+2010^{2011}\right)}=\frac{2010^{2010}+1}{2010^{2011}+1}=B\)(*)
Từ (*)=> A<B
Ta có:
2010.A=\(\frac{2010^{2012}+2010}{2010^{2012}+1}\)
2010.B=\(\frac{2010^{2011}+2010}{2010^{2011}+1}\)
2010.A có phần thừa với 1 là:\(\frac{2009}{2010^{2012}+1}\)
2010.B có phần thừa với 1 là:\(\frac{2009}{2010^{2011}+1}\)
Vì \(\frac{2009}{2010^{2012}+1}<\frac{2009}{2010^{2011}+1}\)
=>2010.A<2010.B
=>A<B
Ta có: \(\frac{1}{1+\frac{2010}{2011}+\frac{2010}{2012}}+\frac{1}{1+\frac{2011}{2010}+\frac{2011}{2012}}+\frac{1}{1+\frac{2012}{2011}+\frac{2012}{2010}}\)
\(=\frac{1}{2010\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}\right)}+\frac{1}{2011\left(\frac{1}{2011}+\frac{1}{2010}+\frac{1}{2012}\right)}+\frac{1}{2012\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}\right)}\)
\(=\frac{\frac{1}{2010}}{\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}}+\frac{\frac{1}{2011}}{\frac{1}{2011}+\frac{1}{2010}+\frac{1}{2012}}+\frac{\frac{1}{2012}}{\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}}\)
\(=\frac{\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}}{\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}}=1\)
Mà \(\frac{2016}{2017}< 1\)
Vậy \(\frac{1}{1+\frac{2010}{2011}+\frac{2010}{2012}}+\frac{1}{1+\frac{2011}{2010}+\frac{2011}{2012}}+\frac{1}{1+\frac{2012}{2010}+\frac{2012}{2011}}>\frac{2016}{2017}\)
dấu cần điền là : >
Vì kết quả của phép tính vế thứ 1 là 1
và phân số 2016/2017 bé hơn 1 nên ta điền dấu lớn
\(2010A=\dfrac{2010^{2012}+2010}{2010^{2012}+1}=1+\dfrac{2009}{2010^{2012}+1}\)
\(2010B=\dfrac{2010^{2011}+2010}{2010^{2011}+1}=1+\dfrac{2009}{2010^{2011}+1}\)
mà \(2010^{2012}+1>2010^{2011}+1\)
nên A<B