Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a) A = 3^1 + 3^2 +........+3^2006
3A = 3^2 + ............+3^2006 + 3^2007
3A - A = (3^2 +........+3^2006 +3^2007)-(3^1 + 3^2+.....+3^2006)
2A = 3^2007 - 3^1
a.
Ta có: \(405^n=......5\)
\(2^{405}=2^{404}\cdot2=\left(.......6\right)\cdot2=.......2\)
\(m^2\) là số chính phương nên có chữ số tận cùng khác 3. Vậy A có chữ số tận cùng khác 0 \(\Rightarrow A⋮10\)
b.
\(B=\frac{2n+9}{n+2}+\frac{5}{n+2}\frac{n+17}{ }-\frac{3n}{n+2}=\frac{2n+9+5n+17-3n}{n+2}=\frac{4n+26}{n+2}\)
\(B=\frac{4n+26}{n+2}=\frac{4\left(n+2\right)+18}{n+2}=4+\frac{18}{n+2}\)
Để B là số tự nhiên thì \(\frac{18}{n+2}\) là số tự nhiên
\(\Rightarrow18⋮\left(n+2\right)\Rightarrow n+2\inư\left(18\right)=\left\{1;2;3;6;9;18\right\}\)
+ \(n+2=1\Leftrightarrow n=-1\) ( loại )
+ \(n+2=2\Leftrightarrow n=0\)
+ \(n+2=3\Leftrightarrow n=1\)
+ \(n+2=6\Leftrightarrow n=4\)
+ \(n+2=9\Leftrightarrow n=7\)
+ \(n+2=18\Leftrightarrow n=16\)
Vậy \(n\in\left\{0;1;4;7;16\right\}\) thì \(B\in N\)
c.
Ta có \(55=5\cdot11\) mà \(\left(5;1\right)=1\)
Do đó \(C=\overline{x1995y}⋮55\)\(\Leftrightarrow\)\(\begin{cases}C⋮5\\C⋮11\end{cases}\) \(\frac{\left(1\right)}{\left(2\right)}\)
\(\left(1\right)\Rightarrow y=0\) hoặc \(y=5\)
+ \(y=0\div\left(2\right)\Rightarrow x+9+5-\left(1+9+0\right)⋮11\Rightarrow x=7\)
+ \(y=5\div\left(2\right)\Rightarrow x+9+5-\left(1+9+5\right)⋮11\Rightarrow x=1\)
a) M = 5 + 52 + 53 + .... + 560
=> 5M = 5 . 5 + 52 . 5 + 53 . 5 + ... + 560 . 5
=> 5M = 52 + 53 + 54 + .... + 561
=> 5M - M = 561 - 5
=> 4M = 561 - 5
=> M = \(\frac{\text{5^{61} - 5}}{4}\)\(\frac{5^{61}-5}{4}\)
b) M = 5 + 52 + 53 + .... + 560
=> M = ( 5 + 52 ) + ( 53 + 54 ) + .... + ( 559 + 560 )
=> M = 5 . ( 50 + 51 ) + 53 . ( 50 + 51 ) + ... + 559 . ( 50 + 51 )
=> M = 5 . 6 + 53 . 6 + ... + 559 . 6
=> M = 6 . ( 5 + 53 + ... + 559 ) \(⋮\)6 => đpcm
a) am = an
=> am - an = 0
=> an.(am-n - 1) = 0
=> an = 0 hoặc am-n - 1 = 0
=> a = 0 hoặc am-n = 1
=> a = 0 hoặc m - n = 0
=> m = n
b) am > an
=> am - an > 0
=> an.(am-n - 1) > 0
=> an và am-n - 1 cùng dấu
Mà a > 0 => an > 0 => am-n - 1 > 0
=> am-n > 1
=> m - n > 0
=> m > n
a) 5M=5(\(5+5^2++.......+5^{60}\)
5M=\(5^2+5^3+...+5^{61}\)
5M-M=\(\left(5^2+5^3+...+5^{61}\right)-\left(5+5^2+5^3+...+5^{60}\right)\)
4M=\(5^{61}-5\)
M=\(\left(5^{61}-5\right):4\)
b) \(\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{59}+5^{60}\right)\)
\(5\left(1+5\right)+5^3\left(1+5\right)+...+5^{59}\left(1+5\right)\)
\(5\cdot6+5^3\cdot6+...+5^{59}\cdot6\)
\(6\left(5+5^3+5^5+...+5^{59}\right)\)
\(\Rightarrow M⋮6\)